python并行

concurrent:built-in module,效率不错  

def calculate(arg, num_process=8):
    if type(arg) is list or isinstance(arg, types.GeneratorType):
        # Approach 1: Use Python ProcessPoolExecutor
        with concurrent.futures.ProcessPoolExecutor(num_process) as executor:
            result_list = list(executor.map(calculate_single_scenario, arg))
        return result_list
    else:
        return calculate_single_scenario(arg)

scoop: map, reduce, 调用多台机器

joblib:并行,且cache以前算过的。

import joblib
from joblib import Parallel, delayed
from joblib import Memory
def calculate_with_cache(arg, num_process=8):
    func_cached = memory.cache(calculate_single_scenario)
if type(arg) is list or isinstance(arg, types.GeneratorType): return Parallel(n_jobs=num_process)(delayed(func_cached)(arg_single) for arg_single in arg) else: return func_cached(arg)

 

转载于:https://www.cnblogs.com/andy-0212/p/10314331.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值