题意:给一串数的key和value,如果相邻两元素key不是互质的就可以将这俩移除并获得这俩的value值,移除后两侧的元素便是相邻了,问最终最大能获得多少value值。
思路:区间DP,区间长度为1时dp[i][i]为0,添加一个标记数组vis[i][j],记录区间内是否所有数字都为可以移除,每次处理需要讨论最后留下区间两侧的情况。
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; typedef long long LL; int key[505],val[505],n; bool vis[505][505];//1表示区间内全部用到,0表示区间内有没用到的。 LL dp[505][505]; int gcd(int x,int y){ return y==0?x:gcd(y,x%y); } int main(){ int t; cin>>t; while(t--){ cin>>n; for(int i=1;i<=n;i++) cin>>key[i]; for(int i=1;i<=n;i++) cin>>val[i]; memset(dp,0,sizeof(dp)); memset(vis,0,sizeof(vis)); for(int i=1;i<n;i++){ if(gcd(key[i],key[i+1])!=1){ dp[i][i+1]=val[i]+val[i+1]; vis[i][i+1]=1; } } for(int l=3;l<=n;l++) for(int i=1;i<=n-l+1;i++){ int j=i+l-1; for(int k=i;k<j;k++){ if(vis[i][k]&&vis[k+1][j]) vis[i][j]=1; dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]); } if(vis[i+1][j-1]&&gcd(key[i],key[j])!=1){ vis[i][j]=1; dp[i][j]=dp[i+1][j-1]+val[i]+val[j]; } } cout<<dp[1][n]<<endl; } return 0; }