【阶】【原根】【指标】

定义:,使得成立的最小的,称为对模的阶,记为

 

定理:如果模有原根,那么它一共有个原根。

 

定理:,则

 

定理:如果为素数,那么素数一定存在原根,并且模的原根的个数为

 

 

定理:是正整数,是整数,若的阶等于,则称为模的一个原根。

 

   假设一个数对于模来说是原根,那么的结果两两不同,且有,那么可以称为是模的一个原根,归根到底就是当且仅当指数为的时候成立。(这里是素数)

 

有原根的充要条件:,其中是奇素数。

 

 

求模素数原根的方法:素因子分解,即的标准分解式,若恒有

 

          

 

成立,则就是的原根。(对于合数求原根,只需把换成即可)

 


 

 

·定义 设m>1的整,g是其一个原根,(a,m)=1,则存在唯一整数r使 g^r三a (mod m) 则r叫做以g为底的a对模m的一个指标,记为r=ind g (a)。

注:性质类似指数、对数,所以有的人将这个称为指数。

 

2016-09-05 20:13:14

转载于:https://www.cnblogs.com/Konjakmoyu/p/5843464.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值