【算法】第二类斯特林数Stirling

第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 。

 

 

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数  。
(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
 
综合两种情况得:
 
 
递推式:dp[i][j] = dp[i-1][j-1]+j*dp[i-1][j];
 
 
 
模板代码:
      dp[0][0] = 1;
        for(int i = 1;i <= n; i++){
            for(int j = 1;j <= i; j++){
                    dp[i][j] = dp[i-1][j-1]+j*dp[i-1][j];
            }
        } 

 

 

n=01
n=10 1
n=20 1 1
n=3
0 1 3 1
n=4
0 1 7 6 1
n=5
0 1 15 25 10 1
n=6
0 1 31 90 65 15 1
n=7
0 1 63 301 350 140 21 1
n=8
0 1 127 966 1701 1050 266 28 1
n=9
0 1 255 3025 7770 6951 2646 462 36 1
 

转载于:https://www.cnblogs.com/zhangjiuding/p/7674885.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值