[USACO 2006DEC]Milk Patterns(牛奶模式)——后缀数组

题面

   POJ3261

  洛谷P2852

解析

  翻译一下题目要求:给定一个长为n(1≤n≤20000)的字符串,求其最长的至少出现了k次的可重叠子串长度。

  答案显然具有二分性,如果长为$l$的串至少出现了k次,那么长为$l-1$的串也至少出现了k次,那么此题显然可以二分答案,那么如何check?

  子串即是原串所有后缀的前缀,至少出现了k次,即是该串至少为k个后缀的公共前缀,联想到后缀数组的性质,可以求出所有排名相邻的串的最长公共前缀LCP,即$hei$数组。那么我们对排名分块,对于任意一块$[l, r]$满足$\forall i\in [l+1,r], hei[i] \geqslant ans$,  如果存在一个块$[l,r]$满足$r-l+1\geqslant k$,那么这个ans就可行,否则不行。这样就完成了check。

 代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn = 20005, maxm = 1000004;

int n, K, mx, ans;
int a[maxn];
int sa[maxn], rk[maxn], fir[maxn], sec[maxn], c[maxm], hei[maxn];

void Build_SA()
{
    for(int i = 1; i <= n; ++i)
        fir[i] = a[i];
    for(int i = 1; i <= n; ++i)
        c[fir[i]] ++;
    for(int i = 1; i <= mx; ++i)
        c[i] += c[i-1];
    for(int i = n; i >= 1; --i)
        sa[c[fir[i]]--] = i;
    for(int k = 1; k <= n; k <<= 1)
    {
        int t = 0;
        for(int i = n - k + 1; i <= n; ++i)
            sec[++t] = i;
        for(int i = 1; i <= n; ++i)
            if(sa[i] - k > 0)
                sec[++t] = sa[i] - k;
        for(int i = 0; i <= mx; ++i)
            c[i] = 0;
        for(int i = 1; i <= n; ++i)
            c[fir[sec[i]]] ++;
        for(int i = 1; i <= mx; ++i)
            c[i] += c[i-1];
        for(int i = n; i; --i)
            sa[c[fir[sec[i]]]--] = sec[i], sec[i] = 0;
        swap(fir, sec);
        t = 0;
        fir[sa[1]] = ++t;
        for(int i = 2; i <= n; ++i)
            if(sec[sa[i]] != sec[sa[i-1]] || sec[sa[i] + k] != sec[sa[i-1] + k])
                fir[sa[i]] = ++t;
            else
                fir[sa[i]] = t;
        if(t >= n)
            break;
        mx = max(mx, t);
    }
}

void get_height()
{
    int h = 0;
    for(int i = 1; i <= n; ++i)
        rk[sa[i]] = i;
    for(int i = 1; i <= n; ++i)
    {
        int t = sa[rk[i]-1];
        while(a[t+h] == a[i+h]) h++;
        hei[rk[i]] = h;
        h = max(0, h - 1);
    }
}

bool check(int x)
{
    int p = 1;
    for(int i = 2; i <= n; ++i)
        if(hei[i] < x)
        {
            if(i - p >= K)
                return 1;
            p = i;
        }
    if(n - p + 1 >= K)
        return 1;
    return 0;
}

int main()
{
    scanf("%d%d", &n, &K);
    for(int i = 1; i <= n; ++i)
        scanf("%d", &a[i]), mx = max(mx, a[i]);
    Build_SA();
    get_height();
    int l = 0, r = n, mid;
    while(l <= r)
    {
        mid = (l+r)>>1;
        if(check(mid))
            ans = mid, l = mid + 1;
        else
            r = mid - 1;
    }
    printf("%d\n", ans);
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/Joker-Yza/p/11337080.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值