【bzoj5178】[Jsoi2011]棒棒糖 主席树

题目描述

Coffee的世界里也是有棒棒糖卖的,Coffee买了N(1≤N≤50000)只连着的。这N只棒棒糖包裹在小塑料袋中,排成一列,相邻的两只棒棒糖的塑料袋是接起来的。为了方便,我们把棒棒糖从左到右编号为1..N。每只棒棒糖有一种口味。第i只的口味是ci(1≤ci≤50000)。两只棒棒糖i,j的口味相同,当且仅当ci=cj。Coffee对m只棒棒糖总体口味的评价比较奇怪。如果这m只棒棒糖中,有一种口味c0的数量严格大于总数的一半m/2,那么Coffee认为这m只棒棒糖主要是c0口味的。Coffee知道,这里的c0如果存在就一定是唯一的。而当c0不存在时,Coffee认为这m只棒棒糖是混合口味的。Coffee暂时舍不得吃棒棒糖,它在想一些好玩的问题。如果考虑棒棒糖序列的一个连续子序列s..t(1≤s≤t≤N),包括棒棒糖s和t。那么这t-s+1只棒棒糖的总体口味是什么呢?Coffee有一堆这样的问题,一共M(1≤M≤50000)个。第i个问题是棒棒糖子序列si..ti的总体口味。请你帮忙解决。

输入

第1行:两个用空格隔开的整数,分别表示N,M。
第2..N+1行:每行一个整数,第i+1行表示ci。
第N+2..N+M+1行:每行两个用空格隔开的整数
第i+N+1行表示,si,ti。

输出

第1..M行:每行一个整数
第i个整数表示你对第i个问题的回答,也就是si..ti的总体口味。
如果总体口味是c0,那么回答用c0表示。
如果总体口味是混合口味,那么回答用0表示

样例输入

5 3 


2
1
1
1 5
2 5
2 4

样例输出

1
0
2


题解

主席树

和 【bzoj2223】[Coci 2009]PATULJCI 做法相同。

时间复杂度 $O(n\log n)$ 。

#include <cstdio>
#define N 300001
int root[N] , lp[N << 5] , rp[N << 5] , si[N << 5] , tot;
void pushup(int x)
{
    si[x] = si[lp[x]] + si[rp[x]];
}
void ins(int x , int &y , int l , int r , int p)
{
    y = ++tot;
    if(l == r)
    {
        si[y] = si[x] + 1;
        return;
    }
    int mid = (l + r) >> 1;
    if(p <= mid) rp[y] = rp[x] , ins(lp[x] , lp[y] , l , mid , p);
    else lp[y] = lp[x] , ins(rp[x] , rp[y] , mid + 1 , r , p);
    pushup(y);
}
int query(int x , int y , int l , int r , int p)
{
    if(l == r) return l;
    int mid = (l + r) >> 1;
    if(si[lp[y]] - si[lp[x]] > p) return query(lp[x] , lp[y] , l , mid , p);
    if(si[rp[y]] - si[rp[x]] > p) return query(rp[x] , rp[y] , mid + 1 , r , p);
    return 0;
}
int main()
{
    int n , lim = 50000 , m , i , x , y , t;
    scanf("%d%d" , &n , &m);
    for(i = 1 ; i <= n ; i ++ )
    {
        scanf("%d" , &x);
        ins(root[i - 1] , root[i] , 1 , lim , x);
    }
    while(m -- )
    {
        scanf("%d%d" , &x , &y);
        t = query(root[x - 1] , root[y] , 1 , lim , (y - x + 1) >> 1);
        if(t) printf("%d\n" , t);
        else printf("0\n");
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/GXZlegend/p/8485643.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值