这里写自定义目录标题
题目描述
棋盘上 AA 点有一个过河卒,需要走到目标 BB 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 CC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,AA 点 (0, 0)(0,0)、BB 点 (n, m)(n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 AA 点能够到达 BB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 BB 点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
输入输出样例
输入 | 输出 |
---|---|
6 6 3 3 | 6 |
– | – |
5 5 2 2 | 0 |
先考虑如果没有任何马的限制,卒子可以随便向右向下走,那么可以想到,一个卒子只能从 当前格子的左侧格子 和 当前格子的上方格子 上走到当前格子。那么假设从 (0,0) 走到 当前格子的左侧格子 的路径条数是 ,从 (0,0)走到 当前格子的上方格子 的路径条数是 y,那么从 (0,0) 走到当前格子的路径条数就应该是 x+y。
其实我们已经得到了一个动态规划的转移方程,设 f(i,j)f(i,j) 表示从 (0,0) 格子走到当前格子的路径条数,那么根据上一段得到的结论,可以得到:
f(i,j) = f(i-1,j) + f(i,j-1)
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int b1 = sc.nextInt();
int b2 = sc.nextInt();
int m1 = sc.nextInt();
int m2 = sc.nextInt();
System.out.print(path(b1, b2, m1