我的答案是,在Conv2D输入通道为1的情况下,二者是没有区别或者说是可以相互转化的。首先,二者调用的最后的代码都是后端代码(以TensorFlow为例,在tensorflow_backend.py里面可以找到):
x = tf.nn.convolution(
input=x,
filter=kernel,
dilation_rate=(dilation_rate,),
strides=(strides,),
padding=padding,
data_format=tf_data_format)
区别在于input和filter传递的参数不同,input不必说,filter=kernel是什么呢?
我们进入Conv1D和Conv2D的源代码看一下。他们的代码位于layers/convolutional.py里面,二者继承的都是基类_Conv(Layer)。进入_Conv类查看代码可以发觉以下代码:
self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size')
……#中间代码省略
input_dim = input_shape[channel_axis]
kernel_shape = self.kernel_size + (input_dim, self.filters)
我们假设,Conv1D的input的大小是(600,300),而Conv2D的input大小是(m,n,1),二者kernel_size为3。
进入conv_utils.normalize_tuple函数可以看到:
def normalize_tuple(value, n, name):
"""Transforms a single int or iterable of ints into an int tuple.
# Arguments
value: The value to validate and

本文深入探讨了在Keras中Conv1D和Conv2D的区别,指出当Conv2D的输入通道为1且设置合适的kernel_size时,两者在效果上等价。通过分析源代码,揭示了Conv1D和Conv2D在内部如何处理输入和过滤器的形状。此外,还解释了为何Conv1D在自然语言处理中能有效提取n_gram=3的特征,从而提高了处理文本的效率。
最低0.47元/天 解锁文章
2689

被折叠的 条评论
为什么被折叠?



