nn.Conv1d和nn.Conv2d理解

参考链接:

https://blog.csdn.net/sunny_xsc1994/article/details/82969867

https://www.cnblogs.com/lovephysics/p/7220111.html

这里只做理解,不放官方文档。

1.nn.Conv1d

感觉一张图就可以理解,不得不说这个图真的太好了。图片来源:https://zhuanlan.zhihu.com/p/29201491

所谓一维卷积,就是卷积时只看纵列。初始:7乘5  卷积核:三种大小,分别为2*5、3*5、4*5,每种两个。重点是卷积时,只在纵列一个方向上滑动。这里stride为1,所以输出(n+2p-f)/s+1,padding为0,所以输出分别是{(7-2)/1 +1=6乘(5-5)/1+1=1},(5*1),4*1。经过一个卷积核大小为4的max_pooling,变成1个值。最后获得6个值,进行拼接,在经过一个全连接层,输出2个类别的概率。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值