POJ 3292

Semi-prime H-numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7059 Accepted: 3030

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21 
85
789
0

Sample Output

21 0
85 5
789 62

Source

 
 
仿照素数的埃氏筛选法即可
 
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 #include <iostream>
 5 
 6 using namespace std;
 7 
 8 #define maxn 1000005
 9 
10 bool H[maxn];
11 int ans[maxn],ele[maxn];
12 int len = 0;
13 
14 
15 void init() {
16 
17         for(int i = 1; i <= maxn - 5; i++) {
18                 H[i] = (i % 4 == 1);
19         }
20 
21         for(int i = 5; i * i <= maxn - 5; i += 4) {
22                 if(!H[i]) continue;
23                 for(int j = i; j * i <= maxn - 5; j++) {
24                         H[j * i] = 0;
25                 }
26         }
27 
28         for(int i = 5; i <= maxn - 5; i += 4) {
29                 if(H[i]) {
30                         ele[len++] = i;
31                 }
32         }
33 
34         for(int i = 0; i < len && ele[i] * ele[i] <= maxn - 5; i++) {
35                 for(int j = i; j < len && ele[j] * ele[i] <= maxn - 5; j++) {
36                         if(ele[i] * ele[j] % 4 == 1)
37                         ans[ ele[i] * ele[j] ] = 1;
38                 }
39         }
40 
41         for(int i = 0; i <=  maxn - 5; i++) {
42                 ans[i] += ans[i - 1];
43         }
44 }
45 
46 int main() {
47        // freopen("sw.in","r",stdin);
48 
49         init();
50 
51         int x;
52         while(~scanf("%d",&x) && x) {
53                 printf("%d %d\n",x,ans[x]);
54         }
55 
56         return 0;
57 
58 }
View Code

 

转载于:https://www.cnblogs.com/hyxsolitude/p/3592625.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值