题目链接:
Semi-prime H-numbers
题意:
定义一种数叫H-numbers,它是所有能除以四余一的数。
在H-numbers中分三种数:
1、H-primes,这种数只能被1和它本身整除,不能被其他的H-number整除,例如9是一个H-number,能被1,3,9整除,但3不是H-number,所以他是H-primes。
2、H-semi-primes是由两个H-primes相乘得出的,H-semi-prime只能分解成两个H-prime数相乘。
3、剩下的是H-composite。
问给一个数,求1到这个数之间有多少个H-semi-primes。
题解:
看代码吧,有注释,很好理解。就是打一个表,然后直接输出。
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<sstream>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<cmath>
#define up(i, x, y) for(int i = x; i <= y; i++)
#define down(i, x, y) for(int i = x; i >= y; i--)
#define MAXN ((int)1e6 + 10)
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
int vis[MAXN];
int ans[MAXN];
void prime_()
{
for(int i = 5; i <= MAXN; i += 4)
{
for(int j = 5; j <= MAXN; j += 4)
{
if(i * j > MAXN) break;
if(!vis[i] && !vis[j]) vis[i * j] = 1;
// i 与 j 都不可以被分解
//换句话说就是之前没有被构造出来过
//这时的i*j定是H-semi—prime,以后再以i * j作为因子的数就不可以构成了,仔细体会下
else vis[i * j] = -1;
//之前被构造出来过 所以 i * j 可以被分解成至少三个H-prime,所以不行
}
}
int len = 0;
for(int i = 1; i <= MAXN; i++){ //打表,计算出1-i之间的多少个H-semi—prime数
if(vis[i] == 1) len++;
vis[i] = len; //有点像前缀和
}
}
int main()
{
int n;
prime_();
while(~scanf("%d", &n) && n)
{
printf("%d %d\n", n, vis[n]);
}
}