51Nod 1119 机器人走方格 V2 组合数学 费马小定理

51Nod 1119 机器人走方格 V2 传送门

高中的排列组合应该有讲过类似的题,求路径条数就是C(m+n-2,n-1)

想法很简单,问题是怎么实现……这里要用到费马小定理,用到逆元

费马小定理:假如p是素数,且a与p互质,那么a^(p-1) = 1 (mod p)。

带模的除法:求 a / b = x (mod M)

只要 M 是一个素数,而且 b 不是 M 的倍数,就可以用一个逆元整数 b’,通过 a / b = a * b' (mod M),来以乘换除。
费马小定理说,对于素数 M 任意不是 M 的倍数的 b,都有:b ^ (M-1) = 1 (mod M)
于是可以拆成:b * b ^ (M-2) = 1 (mod M)
于是:a / b = a / b * (b * b ^ (M-2)) = a * (b ^ (M-2)) (mod M)
也就是说我们要求的逆元就是 b ^ (M-2) (mod M)

#include<iostream> //逆元,费马小定理,组合数 
#include<algorithm> 
#include<string>
#include<string.h>
#include<stdio.h>
#include<cmath>
typedef long long ll;
#define PI acos(-1.0)
using namespace std;
const ll mod=1000000007;
ll f[2200000]; 
void init()
{
    f[1]=1;
    for(int i=2;i<=2000000;i++)
     f[i]=(f[i-1]*i)%mod;
}
ll qpow(ll x,ll n)
{
    ll res=1;
    while(n)
    {
        if(n&1) res=(res*x)%mod;
        //x*=x;
        n>>=1;
        x=(x*x)%mod; //不要忘了每次都要取模
    }
    return res;
}
int main()
{
    ios::sync_with_stdio(false);
    init();
    ll n,m; 
    cin>>n>>m;
    ll ans=f[m+n-2];
    ans=(ans*qpow(f[m-1],mod-2))%mod;
    ans=(ans*qpow(f[n-1],mod-2))%mod;
    cout<<ans<<endl;
    return 0;
}

 

转载于:https://www.cnblogs.com/Egoist-/p/7643067.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值