LightOJ 1356 Prime Independence 二分图最大独立集,HK算法

这个题唯一需要说的就是普通的匈牙利算法是O(nm)的,过不了

然后HK算法可以O(n^0.5m),这个算法可以每次找很多同样长度的最短增广路

分析见:http://www.hardbird.net/lightoj-1356-prime-independence%E6%9C%80%E5%A4%A7%E7%8B%AC%E7%AB%8B%E9%9B%86-hopcroft-carp%E7%AE%97%E6%B3%95/

#include <cstdio>
#include <iostream>
#include <ctime>
#include <vector>
#include <cmath>
#include <map>
#include <queue>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=4e4+5;
const int INF=0x3f3f3f3f;
int prime[45000],cnt,T,n;
int a[N],p[2][500005];
vector<int>fac[N],g[N];
void getprime(){
  bool v[500005];
  memset(v,0,sizeof(v));
  for(int i=2;i*i<=500000;++i)
    if(!v[i])
      for(int j=i*i;j<=500000;j+=i)
        v[j]=1;
  for(int i=2;i<=500000;++i)
  if(!v[i])prime[++cnt]=i;  
}
int Mx[N],My[N],dx[N],dy[N],dis;
bool used[N];
bool SearchP(){
    queue<int>q;
    dis=INF;
    memset(dx,-1,sizeof(dx));
    memset(dy,-1,sizeof(dy));
    for(int i=1;i<=n;++i)
       if(Mx[i]==-1){
        q.push(i);
        dx[i]=0;
       }
     while(!q.empty()){
        int u=q.front();
        q.pop();
        if(dx[u]>dis)break;
        for(int i=0;i<g[u].size();++i){
            int v=g[u][i];
            if(dy[v]!=-1)continue;
            dy[v]=dx[u]+1;
            if(My[v]==-1)dis=dy[v];
            else{
                dx[My[v]]=dy[v]+1;
                q.push(My[v]);
            }
        }
     }
     return dis!=INF;   
}
bool dfs(int u){
    for(int i=0;i<g[u].size();++i){
        int v=g[u][i];
        if(!used[v]&&dy[v]==dx[u]+1){
            used[v]=true;
            if(My[v]!=-1&&dy[v]==dis)continue;
            if(My[v]==-1||dfs(My[v])){
               My[v]=u;
               Mx[u]=v;
               return true; 
            }
        }
    }
    return false;
}
int MaxMatch(){
    int res=0;
    memset(Mx,-1,sizeof(Mx));
    memset(My,-1,sizeof(My));
    while(SearchP()){
        memset(used,0,sizeof(used));
        for(int i=1;i<=n;++i)
           if(Mx[i]==-1&&dfs(i))++res; 
    }
    return res;
}
int main()
{
    getprime();
    int cas=0;
    scanf("%d",&T);
    while(T--){
       scanf("%d",&n);
       memset(p,-1,sizeof(p));
       for(int i=1;i<=n;++i){
         scanf("%d",&a[i]);
         g[i].clear();
         fac[i].clear();
         int tot=0,t=a[i];
         for(int j=1;prime[j]*prime[j]<=t;++j){
           if(t%prime[j]==0){
              fac[i].push_back(prime[j]);
              while(t%prime[j]==0)t/=prime[j],++tot;
           }
         }
         if(t>1)fac[i].push_back(t),++tot;
         p[tot&1][a[i]]=i;
       }
       for(int i=1;i<=n;++i){
         if(p[0][a[i]]!=-1){
            for(int j=0;j<fac[i].size();++j){
               int tmp=a[i]/fac[i][j];
               if(p[1][tmp]==-1)continue;
               g[i].push_back(p[1][tmp]); 
            }
         }
         else{
            for(int j=0;j<fac[i].size();++j){
               int tmp=a[i]/fac[i][j];
               if(p[0][tmp]==-1)continue;
               g[p[0][tmp]].push_back(i); 
            }
         }
       }
       printf("Case %d: %d\n",++cas,n-MaxMatch());
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/shuguangzw/p/5379830.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值