Given an
expression
such asexpression = "e + 8 - a + 5"
and an evaluation map such as{"e": 1}
(given in terms ofevalvars = ["e"]
andevalints = [1]
), return a list of tokens representing the simplified expression, such as["-1*a","14"]
- An expression alternates chunks and symbols, with a space separating each chunk and symbol.
- A chunk is either an expression in parentheses, a variable, or a non-negative integer.
- A variable is a string of lowercase letters (not including digits.) Note that variables can be multiple letters, and note that variables never have a leading coefficient or unary operator like
"2x"
or"-x"
.Expressions are evaluated in the usual order: brackets first, then multiplication, then addition and subtraction. For example,
expression = "1 + 2 * 3"
has an answer of["7"]
.The format of the output is as follows:
- For each term of free variables with non-zero coefficient, we write the free variables within a term in sorted order lexicographically. For example, we would never write a term like
"b*a*c"
, only"a*b*c"
.- Terms have degree equal to the number of free variables being multiplied, counting multiplicity. (For example,
"a*a*b*c"
has degree 4.) We write the largest degree terms of our answer first, breaking ties by lexicographic order ignoring the leading coefficient of the term.- The leading coefficient of the term is placed directly to the left with an asterisk separating it from the variables (if they exist.) A leading coefficient of 1 is still printed.
- An example of a well formatted answer is
["-2*a*a*a", "3*a*a*b", "3*b*b", "4*a", "5*c", "-6"]
- Terms (including constant terms) with coefficient 0 are not included. For example, an expression of "0" has an output of [].
Examples:
Input: expression = "e + 8 - a + 5", evalvars = ["e"], evalints = [1] Output: ["-1*a","14"] Input: expression = "e - 8 + temperature - pressure", evalvars = ["e", "temperature"], evalints = [1, 12] Output: ["-1*pressure","5"] Input: expression = "(e + 8) * (e - 8)", evalvars = [], evalints = [] Output: ["1*e*e","-64"] Input: expression = "7 - 7", evalvars = [], evalints = [] Output: [] Input: expression = "a * b * c + b * a * c * 4", evalvars = [], evalints = [] Output: ["5*a*b*c"] Input: expression = "((a - b) * (b - c) + (c - a)) * ((a - b) + (b - c) * (c - a))", evalvars = [], evalints = [] Output: ["-1*a*a*b*b","2*a*a*b*c","-1*a*a*c*c","1*a*b*b*b","-1*a*b*b*c","-1*a*b*c*c","1*a*c*c*c","-1*b*b*b*c","2*b*b*c*c","-1*b*c*c*c","2*a*a*b","-2*a*a*c","-2*a*b*b","2*a*c*c","1*b*b*b","-1*b*b*c","1*b*c*c","-1*c*c*c","-1*a*a","1*a*b","1*a*c","-1*b*c"]
Note:
expression
will have length in range[1, 250]
.evalvars, evalints
will have equal lengths in range[0, 100]
.
Approach #1: Simulate. [Java]
class Solution {
Map<String, Integer> map = new HashMap<>();
class Term {
int para = 1;
List<String> var = new ArrayList<>();
@Override
public String toString() {
if (para == 0) return "";
String ans = "";
for (String s : var) ans += "*" + s;
return para + ans;
}
boolean equals(Term that) {
if (this.var.size() != that.var.size()) return false;
for (int i = 0; i < this.var.size(); ++i)
if (!this.var.get(i).equals(that.var.get(i))) return false;
return true;
}
int compareTo(Term that) {
if (this.var.size() > that.var.size()) return -1;
if (this.var.size() < that.var.size()) return 1;
for (int i = 0; i < this.var.size(); ++i) {
int x = this.var.get(i).compareTo(that.var.get(i));
if (x != 0) return x;
}
return 0;
}
Term times(Term that) {
Term pro = new Term(this.para * that.para);
for (String s : this.var) pro.var.add(new String(s));
for (String s : that.var) pro.var.add(new String(s));
Collections.sort(pro.var);
return pro;
}
Term (int x) { para = x; }
Term (String s) {
if (map.containsKey(s)) para = map.get(s);
else var.add(s);
}
Term (Term that) {
this.para = that.para;
this.var = new ArrayList<>(that.var);
}
}
class Expression {
List<Term> list = new ArrayList<>();
char oper = '+';
Expression(int x) { list.add(new Term(x)); }
Expression(String s) { list.add(new Term(s)); }
Expression(List<Term> l) { list = l; }
Expression times(Expression that) {
List<Term> c = new ArrayList<>();
for (Term t1 : this.list)
for (Term t2 : that.list)
c.add(t1.times(t2));
c = combine(c);
return new Expression(c);
}
Expression plus(Expression that, int sgn) {
List<Term> c = new ArrayList<>();
for (Term t : this.list) c.add(new Term(t));
for (Term t : that.list) {
Term t2 = new Term(t);
t2.para = t2.para * sgn;
c.add(t2);
}
c = combine(c);
return new Expression(c);
}
Expression cal(Expression that) {
if (oper == '+') return plus(that, 1);
if (oper == '-') return plus(that, -1);
return times(that);
}
List<String> toList() {
List<String> ans = new ArrayList<>();
for (Term t : list) {
String s = t.toString();
if (s.length() > 0) ans.add(s);
}
return ans;
}
List<Term> combine(List<Term> a) {
Collections.sort(a, (t1, t2)->(t1.compareTo(t2)));
List<Term> c = new ArrayList<>();
for (Term t : a) {
if (c.size() != 0 && t.equals(c.get(c.size() - 1)))
c.get(c.size() - 1).para += t.para;
else
c.add(new Term(t));
}
return c;
}
}
public List<String> basicCalculatorIV(String expression, String[] evalvars, int[] evalints) {
for (int i = 0; i < evalvars.length; ++i)
map.put(evalvars[i], evalints[i]);
int i = 0, l = expression.length();
Stack<Expression> stack = new Stack<>();
Stack<Integer> priStack = new Stack<>();
Expression zero = new Expression(0);
stack.push(zero);
priStack.push(0);
int pri = 0;
while (i < l) {
char ch = expression.charAt(i);
if (Character.isDigit(ch)) {
int num = 0;
while (i < l && Character.isDigit(expression.charAt(i))) {
num = num * 10 + (expression.charAt(i) - 48);
i++;
}
stack.add(new Expression(num));
continue;
}
if (Character.isLetter(ch)) {
String s = "";
while (i < l && Character.isLetter(expression.charAt(i))) {
s += expression.charAt(i);
i++;
}
stack.add(new Expression(s));
continue;
}
if (ch == '(') pri += 2;
if (ch == ')') pri -= 2;
if (ch == '+' || ch == '-' || ch == '*') {
int nowPri = pri;
if (ch == '*') nowPri++;
while (!priStack.isEmpty() && nowPri < priStack.peek()) {
Expression now = stack.pop(), last = stack.pop();
priStack.pop();
stack.push(last.cal(now));
}
stack.peek().oper = ch;
priStack.push(nowPri);
}
++i;
}
while (stack.size() > 1) {
Expression now = stack.pop(), last = stack.pop();
stack.push(last.cal(now));
}
return stack.peek().toList();
}
}
Analysis:
Using stack to implement the arithmetic operation.
We can give each operator a priority number, + and - is 0, while * is 1. When an operator is inside "()", its priority increases by 2 for every "()".
For example:
4*(a-(b+(x*y))+d*e)
the operator priorities are:
* - + * + *
1 2 3 7 2 3
always do the operation with highest priority first.
class Trem if for each single term in our final answer.
class Expression is a list of class Terms.
We can do +-* for two Expressions.
Reference:
https://leetcode.com/problems/basic-calculator-iv/discuss/113551/Java-solution-using-stack