树回归-CART

1、树回归的提出背景

线性回归需要拟合所有的样本(除了局部加权性回归),实际生活中大部分的问题是非线性的。所以需要将数据集进行切分成很多份容易建模的数据,然后利用线性回归的方法进行建模。但是一般一两次的切分仍然不能满足要求,所以就提出了树回归的方法

2、CART(classification and regression trees) 分类回归树

该算法不仅能用于分类,还能用于回归。

2.1与决策树的比较

决策树:不断的将数据切分成小数据集,知道所有目标变量完全相同,或者数据不能再切分为止。决策树是一种贪心算法,需要在给定时间内做出最佳选择,但是并不关心能否达到全局最优

2.2构建树的算法

ID3:每次选择当前最佳的特征来分割数据,并按照该特征的所有可能取值来切分,也就是说,如果一个特征有4种取值,一旦按某特征切分之后,该特征之后的算法执行过程将不会再起作用。

缺点:不能处理连续性特征

二元法:每次把数据切分成两份,如果数据的某特征值等于切分所要求的值,那么这些数据进入左子树,反之进入树的右子树

优点:可以处理连续性特征

2.3构建树的伪代码

找到最佳的待切分的特征:

如果该节点不能再切分,将该节点存位叶节点

执行二元切分

在右子树调用createTree()方法

在左子树调用createTree()方法

2.4CART算法实现

  • 按照指定列的某个值切割该矩阵
'''
dataSet:数据集
feature:待划分的特征
value:对应的特征值
'''
def binSplitDataSet(dataSet, feature, value):
    #dataSet[:,feature]取出该列特征值
    #dataSet[:,feature] > value将大于value的值筛选出来,得到的是true,false的矩阵
    #然后利用nonzero选择为true的值所在的行,和列
    #取出行,然后在dataset中取出对应的样本
    mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:]
    mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:]
    return mat0,mat1
>>> from numpy import *
>>> testMat=mat(eye(4))
>>> testMat
matrix([[ 1.,  0.,  0.,  0.],
        [ 0.,  1.,  0.,  0.],
        [ 0.,  0.,  1.,  0.],
        [ 0.,  0.,  0.,  1.]])
>>> mat0,mat1=regtree.binSplitDataSet(testMat,1,0.5)
>>> mat0
matrix([[ 0.,  1.,  0.,  0.]])
>>> mat1
matrix([[ 1.,  0.,  0.,  0.],
        [ 0.,  0.,  1.,  0.],
        [ 0.,  0.,  0.,  1.]])
>>>

 

2.5将CART算法用于回归

  • 伪代码

对每个特征:

对每个特征值:

将数据切分成两份

计算切分的误差

如果当前误差小于当前最小误差,将当前切分设定为最佳切分并更新最小误差

返回最佳切分的特征和特征值

  • 回归树的切分函数代码实现
from numpy import *

#将所有的数据保存在一个矩阵中,并且将每个数转为浮点数
def loadDataSet(fileName):      #general function to parse tab -delimited floats
    dataMat = []                #assume last column is target value
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        #通过map映射将每行的内容保存为一组浮点数
        fltLine = list(map(float,curLine)) #map all elements to float()
        dataMat.append(fltLine)
    return dataMat

'''
dataSet:数据集
feature:待划分的特征
value:对应的特征值
'''
def binSplitDataSet(dataSet, feature, value):
    #dataSet[:,feature]取出该列特征值
    #dataSet[:,feature] > value将大于value的值筛选出来,得到的是true,false的矩阵
    #然后利用nonzero选择为true的值所在的行,和列
    #取出行,然后在dataset中取出对应的样本
    mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:]
    mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:]
    return mat0,mat1

#生成叶节点,得到目标变量的均值
def regLeaf(dataSet):#returns the value used for each leaf
    #最后一列的均值
    return mean(dataSet[:,-1])

#计算目标变量的总误差=均方误差*样本个数
def regErr(dataSet):
    return var(dataSet[:,-1]) * shape(dataSet)[0]

#找到数据最佳二元切分方式
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
    #容许的误差下降值
    tolS = ops[0]
    #切分的最小样本数
    tolN = ops[1]
    #if all the target variables are the same value: quit and return value
    #如果剩余特征数位1,则不再切分,同时调用leaftype产生叶节点
    if len(set(dataSet[:,-1].T.tolist()[0])) == 1: #exit cond 1
        return None, leafType(dataSet)
    m,n = shape(dataSet)
    #the choice of the best feature is driven by Reduction in RSS error from mean
    #计算样本的总误差
    S = errType(dataSet)
    #总误差定义为 正无穷
    bestS = inf;
    bestIndex = 0;
    bestValue = 0
    #遍历所有的特征除了最后一列
    for featIndex in range(n-1):
        #遍历该特征的所有特征值
        for splitVal in set((dataSet[:,featIndex].T.tolist())[0]):
            #根据每个特征值对dataset进行二元划分
            mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
            #如果划分的子集的样本数小于最小样本数,停止本次循环
            if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue
            #计算切分后两个子集的总误差之和
            newS = errType(mat0) + errType(mat1)
            #将新误差之和与最好误差进行比较
            if newS < bestS:
                bestIndex = featIndex
                bestValue = splitVal
                bestS = newS
    #if the decrease (S-bestS) is less than a threshold don't do the split
    #计算划分前后样本的均方误差值之差,如果小于误差下降值
    if (S - bestS) < tolS:
        #则不再切分,产生叶节点
        return None, leafType(dataSet) #exit cond 2
    #根据最佳特征和最佳特征值进行切分
    mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
    #分别计算两个子集的样本数如果小于最小样本数,就不再切分
    if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):  #exit cond 3
        return None, leafType(dataSet)
    #返回最佳切分特征和特征值
    return bestIndex,bestValue#returns the best feature to split on
    #and the value used for that split

def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):#assume dataSet is NumPy Mat so we can array filtering
    #找到最佳的特征以及特征值
    feat, val = chooseBestSplit(dataSet, leafType, errType, ops)#choose the best split
    #如果特征为none,返回特征值
    if feat == None: return val #if the splitting hit a stop condition return val
    #给回归树建立一个空字典
    retTree = {}
    #添加特征和特征值到字典中
    retTree['spInd'] = feat
    retTree['spVal'] = val
    #根据最佳特征和特征值进行划分左子树和右子树
    #递归调用
    lSet, rSet = binSplitDataSet(dataSet, feat, val)
    retTree['left'] = createTree(lSet, leafType, errType, ops)
    retTree['right'] = createTree(rSet, leafType, errType, ops)
    return retTree

 

>>> reload(regtree)
<module 'regtree' from 'E:\\Python36\\regtree.py'>
>>> data=regtree.loadDataSet('E:\\Python36\\ex00.txt')
>>> data=mat(data)
>>> regtree.createTree(data)
{'spInd': 0, 'spVal': 0.48813, 'left': 1.0180967672413792, 'right': -0.044650285714285719}
>>>
>>> data1=regtree.loadDataSet('E:\\Python36\\ex0.txt')
>>> data1=mat(data1)
>>> regtree.createTree(data1)
{'spInd': 1, 'spVal': 0.39435, 'left': {'spInd': 1, 'spVal': 0.582002, 'left': {'spInd': 1, 'spVal': 0.797583, 'left': 3.9871631999999999, 'right': 2.9836209534883724}, 'right': 1.980035071428571}, 'right': {'spInd': 1, 'spVal': 0.197834, 'left': 1.0289583666666666, 'right': -0.023838155555555553}}
>>>
  • 画出切割后的两个子集
def plotBestFit(lSet,rSet):
    import matplotlib.pyplot as plt
    #将自身转为一个多维数组
    lSet=array(lSet)
    rSet=array(rSet)
    #取出数据集的行数
    nl = shape(lSet)[0]
    nr = shape(rSet)[0]
    xcord1=lSet[:,0]
    ycord1=lSet[:,1]
    xcord2=rSet[:,0]
    ycord2=rSet[:,1]
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(0,1, 0.1)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

这里的rset,lset来自createTree

>>> reload(regtree)
<module 'regtree' from 'E:\\Python36\\regtree.py'>
>>> data=regtree.loadDataSet('E:\\Python36\\ex00.txt')
>>> data=mat(data)
>>> rettree,lset,rset=regtree.createTree(data)
>>> regtree.plotBestFit(lset,rset)

  • 画出ex0.txt的切分图
myDat1=regtree.loadDataSet('E:\\Python36\\ex0.txt')
>>> import numpy as np
>>> myDat1=np.array(myDat1)
>>> import matplotlib.pyplot as plt
>>> plt.scatter(myDat1[:,0],myDat1[:,1])
<matplotlib.collections.PathCollection object at 0x0000027C56C643C8>
>>> plt.show()
>>> plt.scatter(myDat1[:,1],myDat1[:,2])
<matplotlib.collections.PathCollection object at 0x0000027C565D87F0>
>>> plt.show()
>>>

效果如图


画出最后的切分图,下面贴上我自己的一点点想法,但是仍然有些bug还没有解决,也不知道自己的思路是不是正确的

 

def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):#assume dataSet is NumPy Mat so we can array filtering
    #找到最佳的特征以及特征值
    feat, val = chooseBestSplit(dataSet, leafType, errType, ops)#choose the best split
    #如果特征为none,返回特征值
    if feat == None: return val #if the splitting hit a stop condition return val
    #给回归树建立一个空字典
    retTree = {}
    #添加特征和特征值到字典中
    retTree['spInd'] = feat
    retTree['spVal'] = val
    #根据最佳特征和特征值进行划分左子树和右子树
    #递归调用
    lSet, rSet = binSplitDataSet(dataSet, feat, val)
    import matplotlib.pyplot as plt
    # firstr = retTree.keys()[0]
    secondDict=retTree['left']
    for key in secondDict.keys():
        if type(secondDict[key])._name_!='dict':
            spindex=secondDict['spInd']
            spvalue=secondDict['spVal']
            lSet1, rSet1 = binSplitDataSet(lSet, spindex, spvalue)
            lSet2, rSet2 = binSplitDataSet(rSet, spindex, spvalue)
            lSet=array(lSet1)
            rSet=array(rSet1)
            lSet_1=array(lSet2)
            rSet_1=array(lSet2)
            xcord1=lSet[:,1]
            ycord1=lSet[:,2]
            xcord2=rSet[:,1]
            ycord2=rSet[:,2]
            xcord3=lSet_1[:,1]
            ycord3=lSet_1[:,2]
            xcord4=rSet_1[:,1]
            ycord4=rSet_1[:,2]
            fig = plt.figure()
            ax = fig.add_subplot(111)
            ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
            ax.scatter(xcord2, ycord2, s=30, c='green')
            ax.scatter(xcord3, ycord3, s=30, c='green')
            ax.scatter(xcord4, ycord4, s=30, c='green')
            plt.xlabel('X1'); plt.ylabel('X2');
            plt.show()
    retTree['left'] = createTree(lSet, leafType, errType, ops)
    retTree['right'] = createTree(rSet, leafType, errType, ops)
    return retTree ,lSet,rSet

3、CRAT树的优化-剪枝

到现在为止我们已经创建好了回归树,但是具体创建的好不好,我们也不清楚,如果树的节点过多,会导致过拟合的现象,如果节点过少,又会导致欠拟合,

为了避免过拟合的现象,我们需要对决策树进行一个剪枝的过程。也就是降低决策树的复杂度

3.1预剪枝

我们在前面寻找最佳的二元切分方式的函数中,需要用户指定参数

    #容许的误差下降值
    tolS = ops[0]
    #切分的最小样本数
    tolN = ops[1]

事实上,这里就是一个预剪枝的过程,设置循环中止条件,创建叶节点

但是预剪枝受用户指定参数的影响很大

3.2后剪枝

使用后剪枝方法需要将数据集分成测试集和训练集。首先指定参数,使得构建出的树足够大、足够复杂,便于剪枝。接下来从上而下找到叶节点,用测试集来判断将这些叶节点合并是否能降低测试误差。如果是的话就合并。

3.2.1后剪枝伪代码

基于已有的树切分测试数据:
如果存在任一子集是一棵树,则在该子集递归剪枝过程
计算将当前两个叶节点合并后的误差
计算不合并的误差
如果合并会降低误差的话,就将叶节点合并

3.2.2后剪枝代码实现

#判断当前处理的节点是否是叶节点,返回布尔值
def isTree(obj):
    return (type(obj).__name__=='dict')
#计算两个叶节点的均值
def getMean(tree):
    #如果右节点是树继续递归
    if isTree(tree['right']):
        tree['right'] = getMean(tree['right'])
    if isTree(tree['left']):
        tree['left'] = getMean(tree['left'])
    #如果找到叶节点,返回两个节点的均值
    return (tree['left']+tree['right'])/2.0
'''
tree:待剪枝的树
testData:剪枝所需要的测试数据
'''
def prune(tree, testData):
    #如果测试数据为空
    if shape(testData)[0] == 0:
        #对树进行塌陷处理,返回树的平均值
        return getMean(tree) #if we have no test data collapse the tree
    #如果测试数据不为空,并且待剪枝的树的左孩子或者右孩子是一颗树
    if (isTree(tree['right']) or isTree(tree['left'])):#if the branches are not trees try to prune them
        #对该树进行一个二元切分
        lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
    #如果左孩纸是一颗树,就对左孩子进行剪枝,并且将左子集作为测试集
    if isTree(tree['left']):
        tree['left'] = prune(tree['left'], lSet)
    #如果右孩子是一颗树,就对右孩子进行剪枝,并且将右子集作为测试集
    if isTree(tree['right']):
        tree['right'] =  prune(tree['right'], rSet)
    #if they are now both leafs, see if we can merge them
    #如果都不是树,比较合并前后的误差大小
    if not isTree(tree['left']) and not isTree(tree['right']):
        #对数据集二元划分
        lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
        errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) + \
                       sum(power(rSet[:,-1] - tree['right'],2))
        treeMean = (tree['left']+tree['right'])/2.0
        errorMerge = sum(power(testData[:,-1] - treeMean,2))
        if errorMerge < errorNoMerge:
            print ("merging")
            return treeMean
        else: return tree
    else: return tree

在命令行里面测试

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "E:\Python36\regtree.py", line 161, in prune
    errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) + sum(power(rSet[:,-1] - tree['right'],2))
TypeError: unsupported operand type(s) for -: 'float' and 'dict'

然后我们将tree['left']打印出来

===
({'spInd': 0, 'spVal': 0.729397, 'left': ({'spInd': 0, 'spVal': 0.952833, 'left': ({'spInd': 0, 'spVal': 0.965969, 'left': ({'spInd': 0, 'spVal': 0.968621, 'left': 86.399636999999998, 'right': 98.648346000000004}, matrix([[  0.98198 ,  86.399637]]), matrix([[  0.968621,  98.648346]])), 'right': ({'spInd': 0, 'spVal': 0.956951, 'left': ({'spInd': 0, 'spVal': 0.958512, 'left': ({'spInd': 0, 'spVal': 0.960398, 'left': 112.386764, 'right': 123.559747}, matrix([[   0.965969,  112.386764]]), matrix([[   0.960398,  123.559747]])), 'right': 135.83701300000001}, matrix([[   0.965969,  112.386764],
        [   0.960398,  123.559747]]), matrix([[   0.958512,  135.837013]])), 'right': ({'spInd': 0, 'spVal': 0.953902, 'left': ({'spInd': 0, 'spVal': 0.954711, 'left': 82.016541000000004, 'right': 100.935789}, matrix([[  0.956951,  82.016541]]), matrix([[   0.954711,  100.935789]])), 'right': 130.92648}, matrix([[   0.954711,  100.935789],
        [   0.956951,   82.016541]]), matrix([[   0.953902,  130.92648 ]]))}, matrix([[   0.965969,  112.386764],
        [   0.958512,  135.837013],
        [   0.960398,  123.559747]]), matrix([[   0.954711,  100.935789],
        [   0.953902,  130.92648 ],

发现这里的tree['left']是一颗树,所以判断条件

#if not isTree(tree['left']) and not isTree(tree['right']):

根本就没用

所以我改成了下面的还是没用

if isTree(tree['left']) == False and isTree(tree['right']) == False:

resolution:https://github.com/crr121/CART/blob/master/Post-Pruning.ipynb

参考博客:

https://github.com/PytLab/MLBox/blob/master/classification_and_regression_trees/notebook/%E5%90%8E%E5%89%AA%E6%9E%9D.ipynb

4、模型树

4.1什么是模型树

叶节点为分段线性函数

4.2代码实现

#为节点生成线性函数
#将数据集格式化为目标变量x和目标变量y
def linearSolve(dataSet):   #helper function used in two places
    m,n = shape(dataSet)
    #构建m行n列的值为1的矩阵
    X = mat(ones((m,n)));
    #构建m行1列的矩阵
    Y = mat(ones((m,1)))#create a copy of data with 1 in 0th postion
    #数据集去除最后一列 赋值给矩阵X的后n-1列
    X[:,1:n] = dataSet[:,0:n-1];
    #将数据集最后一列赋值给Y
    Y = dataSet[:,-1]#and strip out Y
    xTx = X.T*X
    #计算矩阵X的行列式
    if linalg.det(xTx) == 0.0:
        raise NameError('This matrix is singular, cannot do inverse,\n\
        try increasing the second value of ops')
    #计算回归系数ws
    ws = xTx.I * (X.T * Y)
    return ws,X,Y

#当数据集不再需要切分的时候负责生成叶节点模型
def modelLeaf(dataSet):#create linear model and return coeficients
    ws,X,Y = linearSolve(dataSet)
    return ws

def modelErr(dataSet):
    ws,X,Y = linearSolve(dataSet)
    yHat = X * ws
    return sum(power(Y - yHat,2))
>>> from imp import reload
>>> reload(regtree)
<module 'regtree' from 'E:\\Python36\\regtree.py'>
>>> m2 = mat(regtree.loadDataSet('E:\Python36\exp2.txt'))
>>> regtree.createTree(m2,regtree.modelLeaf,regtree.modelErr,(1,10))
({'spInd': 0, 'spVal': 0.285477, 'left': matrix([[  1.69855694e-03],
        [  1.19647739e+01]]), 'right': matrix([[ 3.46877936],
        [ 1.18521743]])}, matrix([[  0.534076,   6.377132],
        [  0.747221,   8.949407],

由结果可知该模型产生了两个线性模型:

matrix([[  1.69855694e-03],
        [  1.19647739e+01]]), 'right': matrix([[ 3.46877936],
        [ 1.18521743]])}

y = 0.00169856 + 11.9647 * x

y = 3.46877936 + 1.18521743 * x

那么我们画出原始的模型

>>> plt.plot(m2[:,0],m2[:,1],'b*')
[<matplotlib.lines.Line2D object at 0x000001B317137160>]
>>> plt.show()

发现和我们利用模型树模拟的方程十分相似,实际上该模型是由y = 3.5 + 1*x 和 y = 0 + 12 * x 加上高斯噪声引起的

5、树回归与标准回归的比较

#输入单个数据点或者行向量,返回一个浮点数
#在给定树结构的情况下,对于单个数据点,该函数会给出一个预测值
def regTreeEval(model, inDat):
    return float(str("".join(model[0])))
    # try:
    #     return float(model)
    # except ValueError:
    #     return model
    # except TypeError:
    #     print(model,'TypeError')
    # return float(model)
    # return float(model[0].get('spInd'))
    # return float(model[0].get('spVal'))


def modelTreeEval(model, inDat):
    n = shape(inDat)[1]
    X = mat(ones((1,n+1)))
    # X[:,1:n+1]=inDat
    X[:,1:n]=inDat[:,:-1]
    return float(X*model)

#treeforecast自顶向下遍历整棵树,直到命中叶节点为止,然后返回当前叶节点的预测值
def treeForeCast(tree, inData, modelEval=regTreeEval):
    #如果当前树不是一棵树,是叶节点,对该节点进行预测
    if not isTree(tree):
        return modelEval(tree, inData)
    #如果当前树是一棵树,非叶节点
    #并且输入数据的特征值》当前树的特征值
    if float(inData[:,tree['spInd']])>tree['spVal']:
    # if inData[tree['spInd']] > tree['spVal']:
        #并且当前树的左节点是一棵树,非叶节点
        if isTree(tree['left']):
            #递归调用treeforecast
            return treeForeCast(tree['left'], inData, modelEval)
        #如果当前树的左节点是叶节点
        else:
            #返回当前叶节点的预测值
            return modelEval(tree['left'], inData)
    #如果输入数据的特征值《当前树的特征值
    else:
        #如果右分支为非叶节点
        if isTree(tree['right']):
            #递归调用treeforecast
            return treeForeCast(tree['right'], inData, modelEval)
        #如果为叶节点
        else:
            #返回当前叶节点的预测值
            return modelEval(tree['right'], inData)

#创建预测树
def createForeCast(tree, testData, modelEval=regTreeEval):
    #测试集的样本数
    m=len(testData)
    #初始化每个样本的预测值为1
    yHat = mat(zeros((m,1)))
    #遍历所有样本
    for i in range(m):
        #计算当前样本的预测值
        yHat[i,0] = treeForeCast(tree, mat(testData[i]), modelEval)
    #返回所有样本数的预测值
    return yHat

def test():
    trainMat = mat(loadDataSet("E:\\Python36\\bikeSpeedVsIq_train.txt"))
    testMat  = mat(loadDataSet("E:\\Python36\\bikeSpeedVsIq_test.txt"))
    myTree   = createTree(trainMat, ops=(1,20))
    yHat     = createForeCast(myTree, testMat[:,0])
    print ("回归树的皮尔逊相关系数:",corrcoef(yHat, testMat[:,1], rowvar=0)[0,1])


    myTree   = createTree(trainMat, modelLeaf, modelErr,(1,20))
    yHat     = createForeCast(myTree, testMat[:,0], modelTreeEval)
    print ("模型树的皮尔逊相关系数:",corrcoef(yHat, testMat[:,1], rowvar=0)[0,1])

    ws, X, Y = linearSolve(trainMat)
    print ("线性回归系数:",ws)
    for i in range(shape(testMat)[0]):
        yHat[i] = testMat[i,0]*ws[1,0] + ws[0,0]
    print ("线性回归模型的皮尔逊相关系数:",corrcoef(yHat, testMat[:,1], rowvar=0)[0,1])

def run():
    import matplotlib.pyplot as plt
    dataSet=loadDataSet('E:\\Python36\\bikeSpeedVsIq_train.txt')
    testSet=loadDataSet('E:\\Python36\\bikeSpeedVsIq_test.txt')
    tree=createTree(mat(dataSet),ops=(1,20))
    yHat=createForeCast(tree,mat(testSet))
    print (corrcoef(yHat.T,mat(testSet)[:,1].T))
    fig=plt.figure()
    ax=fig.add_subplot(111)
    ax.scatter(array(dataSet)[:,0],array(dataSet)[:,1],c='cyan',marker='o')
    plt.show()

这里测试的时候存在问题:TypeError: float() argument must be a string or a number, not 'tuple',还未解决

转载于:https://www.cnblogs.com/flyingcr/p/10326980.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值