机器学习:Kullback-Leibler Divergence (KL 散度)

今天,我们介绍机器学习里非常常用的一个概念,KL 散度,这是一个用来衡量两个概率分布的相似性的一个度量指标。我们知道,现实世界里的任何观察都可以看成表示成信息和数据,一般来说,我们无法获取数据的总体,我们只能拿到数据的部分样本,根据数据的部分样本,我们会对数据的整体做一个近似的估计,而数据整体本身有一个真实的分布(我们可能永远无法知道),那么近似估计的概率分布和数据整体真实的概率分布的相似度,或者说差异程度,可以用 KL 散度来表示。

KL 散度,最早是从信息论里演化而来的,所以在介绍 KL 散度之前,我们要先介绍一下信息熵。信息熵的定义如下:

H=i=1Np(xi)logp(xi)H=−∑i=1Np(xi)log⁡p(xi)

p(xi)p(xi) 表示事件 xixi 发生的概率,信息熵其实反映的就是要表示一个概率分布需要的平均信息量。

在信息熵的基础上,我们定义 KL 散度为:

DKL(p||q)=i=1Np(xi)(logp(xi)log(q(xi))DKL(p||q)=∑i=1Np(xi)⋅(log⁡p(xi)−log⁡(q(xi))

或者表示成下面这种形式:

DKL(p||q)=i=1Np(xi)logp(xi)q(xi)DKL(p||q)=∑i=1Np(xi)⋅log⁡p(xi)q(xi)

DKL(p||q)DKL(p||q) 表示的就是概率 qq 与概率 pp 之间的差异,很显然,散度越小,说明 概率 qq 与概率 pp 之间越接近,那么估计的概率分布于真实的概率分布也就越接近。

KL 散度可以帮助我们选择最优的参数,比如 p(x)p(x) 是我们需要估计的一个未知的分布,我们无法直接得知 p(x)p(x) 的分布,不过我们可以建立一个分布 q(x|θ)q(x|θ) 去估计 p(x)p(x),为了确定参数 θθ,虽然我们无法得知 p(x)p(x) 的真实分布,但可以利用采样的方法,从 p(x)p(x) 中采样 NN 个样本,构建如下的目标函数:

DKL(p||q)=i=1N{logp(xi)logq(xi|θ)}DKL(p||q)=∑i=1N{log⁡p(xi)−log⁡q(xi|θ)}

因为我们要预估的是参数 θθ,上面的第一项 logp(xi)log⁡p(xi) 与参数 θθ 无关,所以我们要优化的其实是 logq(xi|θ)−log⁡q(xi|θ),而这个就是我们熟悉的最大似然估计。

转载于:https://www.cnblogs.com/mtcnn/p/9412104.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值