mcem r语言代码_处理潜变量或随机效应的高维积分时,我们做些什么之MCEM

本文面向对象是心理和教育等社科统计的初入门者。

广义线性潜变量模型(Generalized Linear Latent Variable Models,在心理学和教育学常用的是连接函数为probit或logit的项目反应模型或因子分析模型)和广义线性混合模型(Generalized linear mixed model, GLMM,在心理和教育领域又称之为多层线性模型)是心理和教育统计的基础入门模型。

初学的人应该明白,这两个模型在参数估计的过程中会遇到难以处理的积分(intractable integral)。例如广义线性潜变量模型,EM算法的Q函数为

equation?tex=Q+%3D%7B%5Cint+L%28u%2C+a%2C+b%2C+%5Ctheta%29%7Dg%28%5Ctheta%7Cu%2C+a%2Cb%29d%5Ctheta

其中

equation?tex=u 是观察变量,

equation?tex=a 是斜率,

equation?tex=b 是截距,

equation?tex=%5Ctheta 是潜变量,

equation?tex=L 是似然函数,

equation?tex=g 是条件概率密度函数。

潜变量或维度较低的时候,传统的高斯厄米特积分(Gauss Hermite quadrature)足以胜任,在《Item Response Theory: Parameter Estimation Techniques》和《Generalized, Linear, and Mixed Models》这两本书中,也是推荐的高斯厄米特积分(在全息项目因子分析(多维项目反应理论):参数估计算法这篇文章中,用的也是高斯厄米特积分),但在高维情况下,高斯厄米特积分的设计矩阵会疯狂增长,以至于我们单机内存会不够用(如果我们用5个积分点估计10个维度的高维积分,我们的设计矩阵大小为

equation?tex=9765625%5Ctimes10 ,这个矩阵元素数量为9700万,10个积分点估计10个维度,设计矩阵的元素数量将会是1000亿),如果在生产环境部署高斯厄米特积分代码处理高维积分,无异于是拿系统稳定性开玩笑(就算是分布式系统也不要尝试),所以在生产环境中,不仅需要我们用C++、cuda、并行处理或分布式计算加速我们的计算,还需要我们寻找一种高效的处理高维积分的方法。

而处理GLLVM和GLMM模型的高维积分方法,主要有下面几种:

马尔科夫链蒙特卡洛算法(MCMC)。MCMC算法是实现起来最简单的算法,堪称无脑式方法,给初中生培训两三天估计就能上手,优点是实现简单并且对初值不敏感参数估计结果稳定,缺点是速度慢且占内存;

蒙特卡洛期望极大算法(MCEM)。MCEM方法是把EM算法中的难以处理的E步积分,用蒙特卡洛方法求解,优点与mcmc一样实现简单,运行速度比mcmc快很多倍,缺点是某些情况下容易梯度爆炸并且难以判断是否收敛;

拉普拉斯近似(Laplace Approximation, LA)和自适应高斯厄米特积分(Adaptive Gauss Hermite quadrature, AGQ)。拉普拉近似和自适应高斯厄米特积分这两个方法本质上一个方法,拉普拉斯近似其实是一个积分点的自适应高斯厄米特积分,这两个方法也约可以看做是加了重要性抽样并且固定了样本值的MCEM方法,这两个方法其实都用了极大似然估计中点估计服从协方差矩阵为信息矩阵逆矩阵的渐进正态分布的性质或正交因子模型中因子协方差矩阵的性质,优点均是计算简单;

变分近似(variational approximation, VA)算法。变分近似基于最大化ELOB,原理是找一个容易计算的普通函数近似难以处理的积分函数;

期望传播(expectation propagation)算法。期望传播算法基于最小化KL距离,期望传播和变分近似在数学形式上很像,区别是期望传播走的是直接最小化KL距离的路线,并且期望传播算法看上去更像是矩估计;

其他方法。还有一些非主流的方法,例如EM算法的变体MHRM算法,这是一种基于类似于随机梯度下降和MH采样的算法。

这些方法已经广泛应用各个统计软件,例如R语言的package中,mirt采用了MCEM和MHRM,lme4之前的版本采用了LA和AGQ,最近版本好像只有AGQ,mcmcpack包含有处理高维irt的模块,还有一些小众的包采用了MCEM和VA。

上面这张方法,无论是MCMC还是MCEM,还是AGQ,LA,VA,抑或是MHRM,你都可以看成是一种坐标下降法(coordinate descent),第一个步骤总是求隐变量,第二个步骤求实体参数。

这一章主要聊MCEM。关于MCEM,推荐阅读《The EM Algorithm and Extensions》后面关于MCEM的章节。下面先以项目因子分析模型为例(连接函数为probit或logit的广义潜变量模型,另一种名称是多维项目反应理论)。

最无脑的方法

最无脑的做法是直接套用Bock和Aitkin的解法,Bock和Aitkin的解法是对带有积分的Q函数求梯度,然后将问题简化为求潜变量的后验条件概率密度。

E步

对带有积分形式的Q函数直接求score函数(偏导数),并经过一系列的计算和转换(详细请看《Item Response Theory: Parameter Estimation Techniques》),问题简化为求下式,即

equation?tex=%5Ctheta_i 的后验条件概率密度

equation?tex=P%28%5Ctheta_i%7Cu%2C+a%2C+b%29+%3D+%5Cfrac%7BL%28u%2C+a%2C+b%2C+%5Ctheta_i%29g%28%5Ctheta_i%29%7D%7B%5Cint+L%28u%2C+a%2C+b%2C+%5Ctheta_i%29g%28%5Ctheta_i%29d%5Ctheta%7D

上式中

equation?tex=g

equation?tex=%5Ctheta_i 的先验概率密度函数,

equation?tex=%5Ctheta_i 的先验信息默认为

equation?tex=%5Ctheta_i%5Csim+N%280%2C+I%29

equation?tex=L 是似然函数,当我们使用高斯厄米特积分的时候,

equation?tex=%5Ctheta_i 的取值是高斯厄米特的节点(node),同时概率密度

equation?tex=g 也相应的是高斯厄米特积分的权重(weight)。

注意到

equation?tex=%5Cint+L%28u%2C+a%2C+b%2C+%5Ctheta_i%29g%28%5Ctheta_i%29d%5Ctheta+%3D+E%28L%28u%2C+a%2C+b%2C+%5Ctheta_i%29%29 ,而先验信息

equation?tex=%5Ctheta%5Csim+N%280%2C+I%29 ,所以我们可以随机的从标准多元正态分布中采集

equation?tex=K

equation?tex=%5Ctheta 的样本,所以

equation?tex=%5Cint+L%28u%2C+a%2C+b%2C+%5Ctheta_i%29g%28%5Ctheta_i%29d%5Ctheta+%5Capprox+%5Csum_%7Bk%3D1%7D%5E%7BK%7D%7BL%28u%2C+a%2C+b%2C+%5Ctheta_i%29%29%5Cfrac%7B1%7D%7Bk%7D%7D

所以

equation?tex=g 的概率密度值为

equation?tex=%5Cfrac%7B1%7D%7Bk%7D ,所以

equation?tex=P%28%5Ctheta_k%29+%3D+%5Cfrac%7B%5Cfrac%7B1%7D%7BK%7DL%28u%2C+a%2C+b%2C+%5Ctheta_k%29%7D%7B%5Cfrac%7B1%7D%7BK%7D%5Csum_%7Bk%3D1%7D%5E%7BK%7DL%28u%2C+a%2C+b%2C+%5Ctheta_k%29%7D%3D+%5Cfrac%7BL%28u%2C+a%2C+b%2C+%5Ctheta_k%29%7D%7B%5Csum_%7Bk%3D1%7D%5E%7BK%7DL%28u%2C+a%2C+b%2C+%5Ctheta_k%29%7D

M步

M步的形式和高斯厄米特积分的M步一致,可以用irls或牛顿迭代或BFGS等求解。

著名的R包mirt的MCEM方法用的就是上述的形式。这种形式的参数估计问题是很不稳定,非常容易出现类似梯度爆炸的问题,另外难以判断收敛(下图比较了LSAT数据集下的MCEM的收敛性和GQ(高斯厄米特积分)的收敛性)。优势是代码实现简单,非常容易推广到其他的IRT模型。MCEM的收敛不平稳GQ的收敛很平稳

最无脑方式的对数似然值趋势

最弱智的方法

另一种方法是利用极大似然估计值渐进多元正态分布的性质。即

equation?tex=%5Ctheta_i+%5Csim+N%28%5Chat%7B%5Ctheta_i%7D%2C+%5Chat%7B%5CSigma_i%7D%5E%7B-1%7D%29

equation?tex=%5Chat%7B%5Ctheta_i%7D

equation?tex=%5Ctheta_i 的估计,

equation?tex=%5CSigma_i是信息矩阵,利用这个分布抽取

equation?tex=K

equation?tex=%5Ctheta_i 样本,然后求极大

equation?tex=Q+%3D+%7B%5Cfrac%7B1%7D%7BK%7D%5Csum_%7Bk%3D1%7D%5E%7BK%7D%5Csum_%7Bj%3D1%7D%5E%7BJ%7D%5Csum_%7Bi%3D1%7D%5E%7BN%7DlogP%28u_%7Bij%7D%2C+a_%7Bj%7D%2C+b_%7Bj%7D%2C+%5Ctheta_%7Bij%7D%29%7D

对于二分类模型

equation?tex=P%28u_%7Bij%7D%2C+a_%7Bj%7D%2C+b_%7Bj%7D%2C+%5Ctheta_%7Bik%7D%29+%3DP%28a_j%2C+b_j%2C+%5Ctheta_%7Bik%7D%29%5E%7Bu_%7Bij%7D%7D%281+-+P%28a_j%2C+b_j%2C+%5Ctheta_%7Bik%7D%29%29%5E%7B1+-+u_%7Bij%7D%7D

这种方法是最弱智的方法。通常不会有人使用这种方法进行mcem计算,已经计算了

equation?tex=%5Chat%5Ctheta

equation?tex=%5Chat%5CSigma ,为什么不直接使用LA和AGQ方法。另外,这种方法其实就是数据增强的坐标下降法(也即联合极大似然法),聊胜于无。

最有趣的方法

最有趣的采样方法是Stephen Schilling提出的,Schilling参考的是1991年的一篇讲MCEM贝叶斯二分类probit估计的文章,Schilling原文有些公式没有给出推导,可能会误导初学者,我在下面给出一些详细的推导。

对于二分类probit回归(binary probit progression),我们有下面的公式

equation?tex=P%28u_%7Bij%7D+%3D1+%7C+%5Ctheta_i%2C+a_j%2C+b_j%29+%3D+P%28x_%7Bij%7D+%3E+0%7C%5Ctheta_i%2C+a_j%2C+b_j%29 =

equation?tex=%5CPhi%28%5Ctheta_i%5ETa_j+%2B+b_j%29

所以依据广义线性模型对方差量纲的限制(设定为1),

equation?tex=x_%7Bij%7D 服从截断正态分布

equation?tex=x_%7Bij%7D+%5Csim+N%28%5Ctheta_i%5ETa_j+%2B+b_j%2C+1%29 ,如果

equation?tex=u_%7Bij%7D+%3D+1

equation?tex=x_%7Bij%7D+%5Cgeq+0 ,如果

equation?tex=u_%7Bij%7D+%3D+0

equation?tex=x_%7Bij%7D+%3C+0

又带有均值结构的因子分析模型为

equation?tex=X_i+%3D+B+%2B+%5Ctheta_i%5ETA+%2B+E

其中

equation?tex=X_i

equation?tex=%5Ctheta_i 都是潜变量,

equation?tex=A 是因子载荷,

equation?tex=E 是误差,由于probit回归设定了误差方差为单位矩阵

equation?tex=I ,所以

equation?tex=E+%5Csim+N%280%2C+I%29 ,在因子分析中,通常采用tetrachoric相关矩阵计算因子载荷

equation?tex=A 和 均值

equation?tex=B ,由于残差方差固定为了单位矩阵

equation?tex=I ,这种计算方法在著名的潜变量计算软件mplus中又叫delta法。

注意到先验信息

equation?tex=%5Ctheta_i+%5Csim+N%280%2C+I%29 ,所以该因子模型为正交因子模型,因子方差协方差矩阵除对角线外其他元素为0,对角线元素为1,所以

equation?tex=E%28X_i%29+%3D+B+%2B+AE%28%5Ctheta_i%29+%2B+E%28E%29+%3D+B

equation?tex=VAR%28X%29+%3DE%28%28X+-+B%29%28X+-+B%29%5E%7BT%7D%29+%3D+E%28%28%5Ctheta_i%5ETA+%2B+E%29%28%5Ctheta_i%5ETA+%2B+E%29%5E%7BT%7D%29%3DE%28A%5ET%5Ctheta_i%5Ctheta%5ETA+%2B+A%5ET%5Ctheta_i+E%5ET+%2B+E%5Ctheta_i%5ETA+%2B+EE%5ET%29

注意到

equation?tex=E%28%5Ctheta+%5Ctheta%5ET%29+%3D+VAR%28%5Ctheta%29%3DI

equation?tex=E%28E%29+%3D+E%28E%5ET%29+%3D+0

equation?tex=E%28EE%5ET%29+%3D+VAR%28E%29+%3D+I ,所以

equation?tex=VAR%28X%29+%3D+A%5ETA+%2B+I

由于probit回归中潜变量

equation?tex=X_i 服从正态分布,所以

equation?tex=X%5Csim+N%28B%2C+A%5ETA%2BI%29

若把

equation?tex=%5Ctheta_i 当做变量

equation?tex=A%5ETE%28%5Ctheta_i%29+%3D+X_i+-+B

equation?tex=AA%5ETE%28%5Ctheta_i%29%3DA%28X_i+-+b%29 ,所以

equation?tex=E%28%5Ctheta_i%29+%3D+%28AA%5ET%29%5E%7B-1%7DA%28X_i+-+B%29

上面公式严格来说应该通过最小二乘法或极大似然法导出,注意到

equation?tex=%5Ctheta_i拥有先验信息

equation?tex=%5Ctheta_i+%5Csim+N%280%2C+I%29 ,这相当于为我们之前因子公式的最小二乘形式加了一个

equation?tex=L_2 正则项,所以我们需要把上面的公式改写成岭回归的形式(或者MAP估计的形式),即

equation?tex=E%28%5Ctheta_i%29+%3D+%28AA%5ET+%2B+I%29%5E%7B-1%7DA%28X_i+-+B%29

同样由岭回归最小二乘法参数估计的性质,我们可以得到

equation?tex=VAR%28%5Ctheta_i%29+%3D+%28AA%5ET+%2B+I%29%5E%7B-1%7D

所以

equation?tex=%5Ctheta_i+%5Csim+N%28%28AA%5ET+%2B+I%29%5E%7B-1%7DA%28X_i+-+B%29%2C+%28AA%5ET+%2B+I%29%5E%7B-1%7D%29

于是我们找到了

equation?tex=X_i(注意到

equation?tex=X_%7Bij%7D 服从截断分布,所以

equation?tex=X_i 也服从截断分布) 和

equation?tex=%5Ctheta_i 的分布

equation?tex=X_i%5Csim+N%28B%2C+AA%5ET%2BI%29 ,如果

equation?tex=u_%7Bij%7D+%3D+1

equation?tex=x_%7Bij%7D+%5Cgeq+0 ,如果

equation?tex=u_%7Bij%7D+%3D+0

equation?tex=x_%7Bij%7D+%3C+0

equation?tex=%5Ctheta_i+%5Csim+N%28%28AA%5ET+%2B+I%29%5E%7B-1%7DA%28X_i+-+B%29%2C+%28AA%5ET+%2B+I%29%5E%7B-1%7D%29

由于

equation?tex=X_i 的分布不依赖于

equation?tex=%5Ctheta_i ,我们不需要通过像吉布斯采样那样的算法即可简单方便的采集

equation?tex=%28X_i%2C+%5Ctheta_i%29 联合分布的样本。但是

equation?tex=X_i 的分布是一个截断多元正态分布,技术实现较为困难,自论文发表20多年以来,工业界和学术界均没有一个快速的解决截断多元正态分布采样的方法。所以我们需要借助IRT局部独立性这个假设,把截断多元正态分布变成多个截断正态分布,即

equation?tex=x_%7Bij%7D+%5Csim+N%28%5Ctheta_i%5ETa_j+%2B+b_j%2C+1%29 ,如果

equation?tex=u_%7Bij%7D+%3D+1

equation?tex=x_%7Bij%7D+%5Cgeq+0 ,如果

equation?tex=u_%7Bij%7D+%3D+0

equation?tex=x_%7Bij%7D+%3C+0

由于

equation?tex=x_%7Bij%7D 的分布依赖于

equation?tex=%5Ctheta_i ,所以我们可以采用吉布斯算法采集

equation?tex=%28X_i%2C+%5Ctheta_i%29 联合分布的样本,如果对吉布斯算法不了解,可以参考《Monte Carlo Statistical Methods》这本入门书,最简单的理解就是把吉布斯算法想象成坐标下降法(貌似万事万物都可以理解成坐标下降法)。

所以我们采样算法最终如下

依据先验信息

equation?tex=%5Ctheta_i+%5Csim+N%280%2C+I%29 采集样本

equation?tex=%5Ctheta_i

步骤一:依据多个截断正态分布采集

equation?tex=X_i

步骤二:依据岭回归计算

equation?tex=%5Ctheta_i 的均值和方差,在多元正态分布下采集

equation?tex=%5Ctheta_i

重复步骤一和步骤二直到合适时候的结束。Schilling论文表示处理LSAT数据集,需要燃烧前10次迭代,然后每隔5次迭代采样一个样本,总共采集25个样本即可。

吉布斯抽样的Python代码

from numpy.dual import svd

from scipy.stats import truncnorm

import numpy as np

def multivariate_normal(mean, cov):

x = np.random.normal(0, 1, mean.shape)

u, s, v = svd(cov)

x = np.dot(x, np.sqrt(s)[:, None] * v)

x += mean

return x

def gibbs(scores, slop, threshold, point_size, burn, thin, collect_only_theta=True):

person_size = scores.shape[0]

dim = slop.shape[0]

if collect_only_theta:

theta_ar = np.zeros((point_size, dim, person_size))

else:

# 线性模型求解的充分统计量

t_z = t_x = z_t_z = z_t_x = 0

theta = np.random.normal(size=(dim, person_size))

# theta方差

v = np.linalg.inv(np.dot(slop, slop.T) + np.eye(dim))

for i in range(point_size * thin + burn):

z_val = np.dot(theta.T, slop) + threshold

lower = np.zeros_like(scores, dtype=np.float)

lower[scores == 0] = -np.inf

lower[scores == 1] = -z_val[scores == 1]

upper = np.zeros_like(scores, dtype=np.float)

upper[scores == 1] = np.inf

upper[scores == 0] = -z_val[scores == 0]

# 采样x

x = truncnorm.rvs(lower, upper, loc=z_val)

# theta均值

loc = np.dot(np.dot(v, slop), (x - threshold).T)

# 采样theta

theta = multivariate_normal(loc.T, v).T

if i >= burn and (i - burn) % thin == 0:

if collect_only_theta:

theta_ar[int((i - burn) / thin)] = theta

else:

t_z += np.sum(theta, keepdims=True)

t_x += np.sum(x, axis=0, keepdims=True)

z_t_z += theta.dot(theta.T)

z_t_x += theta.dot(x)

if collect_only_theta:

return theta_ar

else:

return t_z / point_size, t_x / point_size, z_t_z / point_size, z_t_x / point_size

为了能向量化的进行多元正态分布采样,我自己写了一个进行多元正态分布随机数采样的方法,numpy原生方法不支持均值向量化操作。

采样代码

# 用logit生成模拟值

slop = np.random.uniform(0.7, 2, (2, 10))

threshold = np.random.normal(0, 1, size=(1, 10))

theta = np.random.normal(0, 1, size=(1000, 2))

z = np.dot(theta, slop) + threshold

p = 1 / (1 + np.exp(-z))

scores = np.random.binomial(1, p)

# 初值

slop_start_val = np.ones_like(slop)

threshold_start_val = np.zeros_like(threshold)

# 采样

gibbs(scores, slop_start_val, threshold_start_val, point_size=2000, burn=100, thin=1, collect_only_theta=True)

我们把采样的结果画成图采样呈现平稳分布

M步

M步的两种方法,一是只使用采集的

equation?tex=%5Ctheta_i 样本集进行Q函数的极大计算,二是使用

equation?tex=%28X_i%2C+%5Ctheta_i%29 两个变量的联合样本集或只使用

equation?tex=X_i样本集 ,由于

equation?tex=x_%7Bij%7D+%5Csim+N%28%5Ctheta_i%5ETa_j+%2B+b_j%2C+1%29 ,我们可以使用非常简单的最小二乘法求解

equation?tex=a_j

equation?tex=b_j

第一种方法,还是对完全数据似然函数求期望

equation?tex=Q+%3D+%7B%5Cfrac%7B1%7D%7BK%7D%5Csum_%7Bk%3D1%7D%5E%7BK%7DlogL%28a%2C+b%2C+%5Ctheta%29%7D%3D%7B%5Cfrac%7B1%7D%7BK%7D%5Csum_%7Bk%3D1%7D%5E%7BK%7D%5Csum_%7Bj%3D1%7D%5E%7BJ%7D%5Csum_%7Bi%3D1%7D%5E%7BN%7D%28u_%7Bij%7DlogP_%7Bijk%7D+%2B+%281-u_%7Bij%7D%29log%281-+P_%7Bijk%7D%29%7D%29

其中

equation?tex=P_%7Bijk%7D+%3D+%5CPhi%28a_j%2C+b_j%2C+%5Ctheta_%7Bik%7D%29

equation?tex=%5CPhi 是probit函数,

equation?tex=i 指代person,

equation?tex=j 指代item,

equation?tex=k 指代采样的样本,为了节省内存同时加快速度,我们一般不对Q函数直接求极大,而对每一个

equation?tex=Q_%7Bj%7D 求极大,即对

equation?tex=Q_j%3D%7B%5Cfrac%7B1%7D%7BK%7D%5Csum_%7Bk%3D1%7D%5E%7BK%7D%5Csum_%7Bi%3D1%7D%5E%7BN%7D%28u_%7Bij%7DlogP_%7Bijk%7D+%2B+%281-u_%7Bij%7D%29log%281-+P_%7Bijk%7D%29%7D%29 求极大,这种方法一看就知道E步起的作用是数据增强,并且这种方法类似于最弱智的MCEM方法。

第二种方法非常的easy,直接套用最小二乘公式即可求解

equation?tex=A ,

equation?tex=B 。对于第二种方法,在我们采样的时候,没必要保存每一个采样的样本值,只需要计算参数估计的充分统计量期望即可,即

equation?tex=E%28%5Ctheta%5ET%5Ctheta%29 ,

equation?tex=E%28%5Ctheta%5ETX%29 ,

equation?tex=E%281%5ET%5Ctheta%29 ,

equation?tex=E%281%5ETX%29 ,我们可以使用

equation?tex=%28X_i%2C+%5Ctheta_i%29 或只使用

equation?tex=X_i 计算充分统计量,然后依据这些充分统计量的期望值,计算

equation?tex=A ,

equation?tex=B

equation?tex=A%3D%5Cfrac%7B%28E%28%5Ctheta%5ET%5Ctheta%29%E2%88%92%5Cfrac%7BE%281%5ET%5Ctheta%29%5ETE%281%5ET%5Ctheta%29%7D%7Bn%7D%29%5E%7B-1%7D%7D%7BE%28%5Ctheta%5ETX%29+%E2%88%92+%5Cfrac%7BE%281%5ET%5Ctheta%29%5ETE%281%5ETX%29%7D%E2%80%8A%7B%E2%80%8An%7D%7D

equation?tex=B+%3D+%5Cfrac%7BE%281%5ETX%29+%E2%88%92+E%281%5ET%5Ctheta%29A%7D%7Bn%7D

Schilling方法的优势是很稳定,劣势是吉布斯采样的速度问题,虽然可以用并行采样规避这个问题,收敛准则难以判断(Schilling原文给出了一种判断mcem收敛的方法,有兴趣的可以看看,下图是估计LSAT数据集的斜率变化过程,用的是第一种方法,即求Q函数极大)。LSAT数据集斜率参数估计

Schilling方法推广到ordinal数据模型的时候,需要进行一些简单的参数化的工作,Schilling方法还能非常容易的推广到动态IRT模型和层级IRT模型等等复杂的IRT的参数估计上,总之Schilling方法是非常棒的一种参数估计方法。

三种方法的本质

三种方法的本质都是求潜变量的条件概率密度。其中最弱智方法和最有趣方法的本质也是数据增强,所以这两种方法的条件概率密度都是

equation?tex=%5Cfrac%7B1%7D%7BK%7D (

equation?tex=K 是每个样本集上的采样数),这两种方法的参数估计也较为稳定,而最无脑方法采用的是计算后验概率密度,由于每次采样的潜变量值不一样,导致这种方法容易梯度爆炸,所以我也很疑惑为什么R包mirt会采用这种方法。

随机效应示例

稍后补上

代码示例

稍后补上

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值