- Time limit
- 5000 ms Case time limit
- 2000 ms Memory limit
- 65536 kB
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Output
Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3 0
题解:
线段树建树加查询,只是树的每个节点要保存两个值(最大和最小),并且查询的时候返回结构体。
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN = 50005;
const int INF = 0x3f3f3f3f;
int Tree[MAXN*4][2];
int Data[MAXN];
struct D{
int MA;
int MI;
D(int a,int b){
MA = a;
MI = b;
}
};
void Build(int temp,int left,int right){
if(left == right){
Tree[temp][0] = Tree[temp][1] = Data[left];
return ;
}
int mid = left + (right-left)/2;
Build(temp<<1,left,mid);
Build(temp<<1|1,mid+1,right);
Tree[temp][0] = max(Tree[temp<<1][0],Tree[temp<<1|1][0]);
Tree[temp][1] = min(Tree[temp<<1][1],Tree[temp<<1|1][1]);
}
struct D query(int temp,int left,int right,int ql,int qr){
if(ql>right || qr<left)return D(-INF,INF);
if(ql<=left && qr>=right)return D(Tree[temp][0],Tree[temp][1]);
int mid = left + (right-left)/2;
struct D a = query(temp<<1,left,mid,ql,qr);
struct D b = query(temp<<1|1,mid+1,right,ql,qr);
a.MA = max(a.MA,b.MA);
a.MI = min(a.MI,b.MI);
return a;
}
int main(){
int N,M;
scanf("%d %d",&N,&M);
for(int i=1 ; i<=N ; i++)scanf("%d",&Data[i]);
Build(1,1,N);
int A,B;
while(M--){
scanf("%d %d",&A,&B);
struct D t = query(1,1,N,A,B);
printf("%d\n",t.MA-t.MI);
}
return 0;
}
本文详细介绍了使用线段树解决特定区间查询问题的方法,通过一个关于奶牛高度差的实例来展示如何构建线段树并进行高效查询。该实例涉及大规模数据集的处理,展示了线段树在解决此类问题时的优势。
3194

被折叠的 条评论
为什么被折叠?



