https://vijos.org/p/1121
实际上这题其实是递推。。
到一个点的路径条数为它左边和上面的点的路径和
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ms(i,j) memset(i, j, sizeof(i));
#define pa2(a,x,y) for (int i=0;i<=x;i++){ for (int j=0;j<=y;j++) if (a[i][j]==-100000000) printf("X "); else printf("%d ", a[i][j]); putchar('\n');}
using namespace std;
const int maxm = 15 + 5, maxn = 15 + 5, INF = 100000000;
const int dx[9] = {0,2,2 ,1 ,-1,-2,-2,-1,1};
const int dy[9] = {0,1,-1,-2,-2,-1,1 ,2 ,2};
int n,m,x,y;
int f[maxn][maxm];
int main ()
{
scanf("%d%d%d%d", &n, &m, &x, &y);
ms(f,0);
f[0][0] = 1;
for (int i=0;i<9;i++)
{
if (x+dx[i]>=0&&x+dx[i]<=n&&y+dy[i]>=0&&y+dy[i]<=m)
{
f[x+dx[i]][y+dy[i]] = -INF;
}
}
for (int i=0;i<=m;i++)
{
if (f[0][i]!=-INF) f[0][i] = 1; else break;
}
for (int i=0;i<=n;i++)
{
if (f[i][0]!=-INF) f[i][0] = 1; else break;
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
if (f[i][j]!=-INF)
{
if (f[i-1][j]!=-INF) f[i][j] += f[i-1][j];
if (f[i][j-1]!=-INF) f[i][j] += f[i][j-1];
}
}
printf("%d\n", f[n][m]);
return 0;
}
本文介绍了一种使用递推法解决从起点到终点的路径计数问题的方法,特别考虑了某些点不可到达的情况。通过动态规划的思想,有效地计算出了所有可能的路径数目。
1022

被折叠的 条评论
为什么被折叠?



