集合幂级数

根据vfk的2015的论文学习了一下集合幂级数

 

一. 集合并卷积:

设全集$U=\{1,2,\dots,n\}$$, $集合幂级数$f=\sum\limits_{S\subseteq 2^{U}}f_{S}x^{S},g=\sum\limits_{S\subseteq 2^{U}}g_{S}x^{S}$.

定义$f\cdot g=h$, 其中$h$是$f$与$g$的集合并卷积, $h_{S}$满足:

$$h_S=\sum\limits_{L\subseteq 2^{U}}\sum\limits_{R\subseteq 2^{U}}[L\cup R = S]f_{L}g_{R}$$

1.$O(4^n)$算法

void mul(int *f, int *g, int *h, int n) {
	for (int i=0; i<n; ++i) {
		for (int j=0; j<n; ++j) {
			h[i|j] += f[i]*g[j];
		}
	}
}

2.利用分治乘法.

记$h_0$为左半部分, $h_1$为右半部分, 有

$$h_0=f_0\cdot g_0$$

$$\begin{align} h_1 & =f_1\cdot g_0+f_0\cdot g_1+f_1\cdot g_1 \notag \\ & =  (f_0+f_1)\cdot (g_0+g_1)-h_0 \notag \end{align}$$

设复杂度为$T(n)$, 有$T(n)=2T(n-1)+O(2^n)$, 有$T(n)=O(n2^n)$

void mul(int *f, int *g, int *h, int n) {
	if (n==1) h[0] = f[0]*g[0];
	else {
		for (int i=0; i<n/2; ++i) {
			f[i+n] += f[i];
			g[i+n] += g[i];
		}
		FWT(f,g,h,n/2);
		FWT(f+n/2,g+n/2,h+n/2,n/2);
		for (int i=0; i<n/2; ++i) {
			h[i+n/2] -= h[i];
		}
	}
}

3.快速莫比乌斯变换

定义: $f$的莫比乌斯变换为集合幂级数$\hat{f}$, 有

$$\hat{f_S}=\sum\limits_{T\subseteq S}f_{T}$$

利用容斥可以得到莫比乌斯反演公式

$$f_{S}=\sum\limits_{T\subseteq S}(-1)^{|S|-|T|}\hat{f_T}$$

对集合并卷积两端做莫比乌斯变换有

$$\hat{h}_S=\sum\limits_{L\subseteq 2^{U}}\sum\limits_{R\subseteq 2^{U}}[L\cup R \subseteq S]f_{L}g_{R}$$

由于$[L\cup R\subseteq S]=[L\subseteq S][R\subseteq S]$, 可以得到

$$\begin{align} \hat{h}_S & =\sum\limits_{L\subseteq S}\sum\limits_{R\subseteq S}f_{L}g_{R} \notag \\ & =  \hat{f_S}\hat{g_S} \notag \end{align}$$

所以, 如果想求$h=fg$, 可以先求出$\hat{f}$和$\hat{g}$, 然后将对应系数相乘就可以得到$\hat{h}$, 再进行莫比乌斯反演就可以得出$h$. 可以类比$FFT$中的点值表达式.

莫比乌斯变换详细求法可以看这篇题解, 逆变换将加改成减即可.

 

二. 对称差卷积:

$$h_S=\sum\limits_{L\subseteq 2^{U}}\sum\limits_{R\subseteq 2^{U}}[L\oplus R = S]f_{L}g_{R}$$

分治乘法同样可以做, 一个更好的方法是沃尔什变换.

首先注意到对于任意$S$有

$$\frac{1}{2^n}\sum\limits_{T\subseteq 2^{U}}(-1)^{|S\cap T|}=[S=\varnothing]$$

所以

$$\begin{align} h_{S} &=\sum\limits_{L\subseteq 2^{U}}\sum\limits_{R\subseteq 2^{U}}[L\oplus R \oplus S=\varnothing]f_{L}g_{R} \notag \\ &= \sum\limits_{L\subseteq 2^{U}}\sum\limits_{R\subseteq 2^{U}}\frac{1}{2^n}\sum\limits_{T\subseteq 2^{U}}(-1)^{|T\cap (L\oplus R\oplus S)|}f_{L}g_{R} \notag \\ &= \sum\limits_{L\subseteq 2^{U}}\sum\limits_{R\subseteq 2^{U}}\frac{1}{2^n}\sum\limits_{T\subseteq 2^U}(-1)^{|T\cap L|}(-1)^{|T\cap R|}(-1)^{|T\cap S|}f_{L}g_{R}\notag \\ &= \frac{1}{2^n}\sum\limits_{T\subseteq 2^U}(-1)^{|T\cap S|}\Bigg(\sum\limits_{L\subseteq 2^{U}}(-1)^{|T\cap L|}f_{L}\Bigg)\Bigg(\sum\limits_{R\subseteq 2^{U}}(-1)^{|T\cap R|}g_{R}\Bigg) \notag \end{align}$$

定义$f$的沃尔什变换为集合幂级数$\hat{f}$, 其中

$$\hat{f_S}=\sum\limits_{T\subseteq 2^{U}}f_{T}(-1)^{|S\cap T|}$$

容斥得到逆变换为

$$f_{S}=\frac{1}{2^n}\sum\limits_{T\subseteq 2^U}\hat{f_T}(-1)^{|S\cap T|}$$

快速求法类似于莫比乌斯变换, 记$f_{i,S}$为只考虑前$i$种元素时$\hat{f_S}$的值, 有

$$f_{i,S} =   \begin{cases} f_{i-1,S}+f_{i-1,S+\{i\}}  & \text{$i\notin S$} \\ f_{i-1,S-\{i\}}-f_{i-1,S} & \text{$i\in S$} \end{cases}$$

 

求三种卷积完整代码

#include <iostream>
#include <cstdio>
#define REP(i,a,n) for(int i=a;i<=n;++i)
using namespace std;
typedef long long ll;
const int N = 5e6+10, P = 998244353;
int inv(int x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
int n, a[N], b[N], c[N], aa[N], bb[N];

void FMT_or(int *a, int n, int tp) {
	for (int i=0; (1<<i)<n; ++i) {
		REP(j,0,n-1) if (j>>i&1) {
			a[j]=(tp==1?a[j]+a[j^1<<i]:a[j]-a[j^1<<i])%P;
		}
	}
}
void FMT_and(int *a, int n, int tp) {
	for (int i=0; (1<<i)<n; ++i) {
		REP(j,0,n-1) if (j>>i&1) {
			a[j^1<<i]=(tp==1?a[j^1<<i]+a[j]:a[j^1<<i]-a[j])%P;
		}
	}
}
void FWT(int *a, int n, int tp) {
	for (int i=0; (1<<i)<n; ++i) {
		REP(j,0,n-1) if (j>>i&1) {
			int l = a[j^1<<i], r = a[j];
			a[j^1<<i] = (l+r)%P;
			a[j] = (l-r)%P;
		}
	}
	if (tp==-1) {
		int in = inv(n);
		REP(i,0,n-1) a[i]=(ll)a[i]*in%P;
	}
}

void mul(void (*f)(int *,int,int),int *a, int *b, int *c, int n) {
	REP(i,0,n-1) aa[i]=a[i],bb[i]=b[i];
	f(aa,n,1),f(bb,n,1);
	REP(i,0,n-1) c[i]=(ll)aa[i]*bb[i]%P;
	f(c,n,-1);
	REP(i,0,n-1) if (c[i]<0) c[i]+=P;
}

int main() {
	scanf("%d", &n);
	n = 1<<n;
	REP(i,0,n-1) scanf("%d", a+i);
	REP(i,0,n-1) scanf("%d", b+i);
	mul(FMT_or,a,b,c,n);
	REP(i,0,n-1) printf("%d ", c[i]);puts("");
	mul(FMT_and,a,b,c,n);
	REP(i,0,n-1) printf("%d ", c[i]);puts("");
	mul(FWT,a,b,c,n);
	REP(i,0,n-1) printf("%d ", c[i]);puts("");
}

 

转载于:https://www.cnblogs.com/uid001/p/11211474.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值