Beta冲刺版本第二天

该作业所属课程:https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2

作业要求地址:https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2/homework/3341

 

作业目标:

  1. 每天提交一篇冲刺总结博客(星期五还需提交Beta版本的发布说明)
  2. 根据Alpha发布后的测试结果,以及项目完成情况评估还需要完成哪些工作,以及完成这些工作所需要的时间,确定总的预期剩余任务量。(任务量以 小时/人 为单位)。
  3. 进行每日例会,每个成员汇报自己今天完成的工作,PM安排明天的任务分工。
  4. PM根据每天的例会情况绘制项目燃尽图。
  5. PM做每日总结。
  6. 一、团队成员

刘方俊(队长)      201731062623

何骁天                  201731062419

林楠                     201731062428

郑天越                  201731062621

蒋鑫                     201731062427

贺俊朋                  201731062431

陈天钧                  201731062429

 

 

 

 

 

 

二、SCRUM部分

刘方俊

今日进展:对登录界面的输入数据进行验证和报错

明日安排:检查并整合各成员的完成情况

林楠:

今日进展:修改css代码,美化界面

明日安排:继续美化界面

 

何骁天:

今日进展:修改css代码,美化界面

 

明日安排:继续美化界面

 

蒋鑫:

今日进展:对闲置发布界面的输入数据进行验证和报错

明日安排:上传虚拟货物数据 

贺俊朋:

今日进展:对求购发布界面的输入数据进行验证和报错

明日安排:上传虚拟货物数据

郑天越:

今日进展:制作并裁剪图片

明日安排:继续修改图片

陈天钧:

今日进展:制作并裁剪图片

明日安排:继续修改图片

 三、燃尽表

 

 

四、总结:今天主要做了很多优化,包括界面上和一些输入数据上的修改,也准备了一些图片用于明天美化网页。

转载于:https://www.cnblogs.com/xiaoguanguan/p/11020176.html

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值