概率统计数学模型 新 乡 学 院 1、保险储备策略问题 某企业每年耗用某种材料3650件,每日平均耗用10件,材料单价10元,一次订购费每件25元,每件年储存费2元,每件缺货一次费用4元,平均交货期10天,交货期内不同耗用量X的概率分布如下表所示,试求使用平均费用达到最小的订货量、订购次数及含有保险储量的最佳订货点。 /*数学建模步骤: (1)问题分析及模型的建立: a、求最佳订货量及订货次数; b、求最佳订货点和保险储备量 (2) 模型的Matlab实现方法*/ (1)问题分析及模型的建立 名词解释:保险储备是指企业在经济活动中,按照某一经济订货批量,在订货点发出订货单后,如果需求增大或送货延迟,就会发生缺货或供货中断。为防止由此造成的损失,需要多储备一些存货以备应急之需,称为保险储备。这些存货在正常情况下不动用,只有当存货过量使用或送货延迟时才使用。 假设: a、求最佳订货量及订货次数 货物订货量 Q=RT 记任意时刻t的库存量为q(t) ,则有: q(t+△t)=q(t)-R△t,0≤ts Q(j)=X(j)-s; else Q(j)=0; end end Q; E(i)=Q*P’; C(i)=n*g*E(i); H(i)=h*B(i); T(i)=C(i)+H(i); end E,C,R,T;Mint=min(T’); 运算结果为:E=(5.6000 3.000 1.4000 0.55000 0.2000 0.50 0) C=268.800 144.000 67.200 26.400 9.600 2.400 0 H=0 50 100 150 200 250 300 T=26.800 194.000 167.200 176.400 209.600 252.400 300.00 minT=167.2000, B*=10,S*=10. 结果: (1)不采用储存策略,缺货费用较多; (2)保存较多的库存量,储备费用较多; (3)建立合理的保险储备量,则企业的年度平均费用最少. 2、回归分析—商品销量与价格的关系 某厂生产的一种电器的销量y与竞争对手的价格x1和本厂的价格x2有关,下表是该商品在10个城市的销售记录,试根据这些数据建立y与x1、x2的关系式。若某市本厂产品销价160元,竞争对手销价170元,预测商品在该市的销量. (1)模型的建立 将(x1,y)和(x2,y)各10个点绘成散点图,可以看出y与x2有比较明显的线性关系,而y与x1之间的关系则难以确定,用回归分析进行研究(plot(x,y,’:r+’)) 回归分析的类型: 最简单形式:y=b0 + b1x 多元形式:y=b0 + b1x1 + b2x2 + ‥‥‥ + bmxm 更一般形式: (多元线性回归的标准形) y=b0 + b1f1(x) + b2f2(x) +‥‥‥+ bmfm(x) 其中m≥2,x=(x1,x2, ‥‥‥,xm),fj是已知函数 b=(b0,b1, ‥‥‥,bm)为回归系数 在回归分析中自变量x=(x1,x2, ‥‥‥,xm)是影响变量y的主要因素,是能够被控制和观察的,且还受到随机因素干扰,可以合理假设这种干扰服丛正态分布,模型记为: 记 (2)模型在Matlab中的实现方法 命令形式: b=regress(Y,X) /*求解多元线性回归*/ [b,bint,r,rint,stays]=regress(Y,X,alpha) 实现方
求订货点和订货量的matlab,回归分析、方差分析、统计优化.ppt
最新推荐文章于 2021-03-27 21:54:11 发布