求订货点和订货量的matlab,回归分析、方差分析、统计优化.ppt

概率统计数学模型 新 乡 学 院 1、保险储备策略问题 某企业每年耗用某种材料3650件,每日平均耗用10件,材料单价10元,一次订购费每件25元,每件年储存费2元,每件缺货一次费用4元,平均交货期10天,交货期内不同耗用量X的概率分布如下表所示,试求使用平均费用达到最小的订货量、订购次数及含有保险储量的最佳订货点。 /*数学建模步骤: (1)问题分析及模型的建立: a、求最佳订货量及订货次数; b、求最佳订货点和保险储备量 (2) 模型的Matlab实现方法*/ (1)问题分析及模型的建立 名词解释:保险储备是指企业在经济活动中,按照某一经济订货批量,在订货点发出订货单后,如果需求增大或送货延迟,就会发生缺货或供货中断。为防止由此造成的损失,需要多储备一些存货以备应急之需,称为保险储备。这些存货在正常情况下不动用,只有当存货过量使用或送货延迟时才使用。 假设: a、求最佳订货量及订货次数 货物订货量 Q=RT 记任意时刻t的库存量为q(t) ,则有: q(t+△t)=q(t)-R△t,0≤ts Q(j)=X(j)-s; else Q(j)=0; end end Q; E(i)=Q*P’; C(i)=n*g*E(i); H(i)=h*B(i); T(i)=C(i)+H(i); end E,C,R,T;Mint=min(T’); 运算结果为:E=(5.6000 3.000 1.4000 0.55000 0.2000 0.50 0) C=268.800 144.000 67.200 26.400 9.600 2.400 0 H=0 50 100 150 200 250 300 T=26.800 194.000 167.200 176.400 209.600 252.400 300.00 minT=167.2000, B*=10,S*=10. 结果: (1)不采用储存策略,缺货费用较多; (2)保存较多的库存量,储备费用较多; (3)建立合理的保险储备量,则企业的年度平均费用最少. 2、回归分析—商品销量与价格的关系 某厂生产的一种电器的销量y与竞争对手的价格x1和本厂的价格x2有关,下表是该商品在10个城市的销售记录,试根据这些数据建立y与x1、x2的关系式。若某市本厂产品销价160元,竞争对手销价170元,预测商品在该市的销量. (1)模型的建立 将(x1,y)和(x2,y)各10个点绘成散点图,可以看出y与x2有比较明显的线性关系,而y与x1之间的关系则难以确定,用回归分析进行研究(plot(x,y,’:r+’)) 回归分析的类型: 最简单形式:y=b0 + b1x 多元形式:y=b0 + b1x1 + b2x2 + ‥‥‥ + bmxm 更一般形式: (多元线性回归的标准形) y=b0 + b1f1(x) + b2f2(x) +‥‥‥+ bmfm(x) 其中m≥2,x=(x1,x2, ‥‥‥,xm),fj是已知函数 b=(b0,b1, ‥‥‥,bm)为回归系数 在回归分析中自变量x=(x1,x2, ‥‥‥,xm)是影响变量y的主要因素,是能够被控制和观察的,且还受到随机因素干扰,可以合理假设这种干扰服丛正态分布,模型记为: 记 (2)模型在Matlab中的实现方法 命令形式: b=regress(Y,X) /*求解多元线性回归*/ [b,bint,r,rint,stays]=regress(Y,X,alpha) 实现方

原料油的采购与精炼安排是否合理,直接影响着食品公司所获得的总利润。本文针对食品加工问题,建立了线性规划模型,并依据所给条件,制定了一套最优采购方案和精炼方案,使得公司获得最大利润,并就原料油市场价格的波动对利润的影响作了全面计划。 模型Ⅰ 对问题1建立了线性规划模型。本文用LINDO和LINGO对问题1进行了编程解,结果一致,得到公司获得的最大利润为 元。 模型Ⅱ 对问题2建立模型。考虑如下的价格变化方式:2月份植物油价上升 ,非植物油上升 ;3月份植物油价上升 ,非植物油上升 ;其余月份保持这种线性的上升势头。对不同的值 (直到20),采用MATLAB编程法计算出变动后的价格矩阵,再将计算出的价格矩阵代入到模型1中出相应的最大利润。最大利润如表2。 表3 价格波动 与最大利润 的对应关系 1 948222.2 10 -1759.259 2 818018.5 11 -26425.93 3 687814.8 12 -51092.59 4 557611.1 13 -70574.07 5 429907.4 14 -87074.07 6 316796.3 15 -91574.07 7 204485.2 16 -96074.07 8 115848.1 17 -100574.1 9 51411.85 18 -105074.1 19 -109574.1 20 -114074.1 本文针对模型Ⅱ所的结果进行了拟合,并且拟合函数具有很高的可决系数,因此所拟合的函数能够较好的反应公司所获得的总利润与原料油价格上涨之间的关系。针对原料油价格上涨这一问题,拟合得到的函数为公司提供了很好的生产调整方案,具有很高的实用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值