python4级_形状必须为4级,但为5级

我是麦克斯在紧张状态下拼搏。但是我不需要使用内置的tf.nn.max_pool(),而是必须使用tf.reduce_max()。但它给出了一个错误:ValueError: Shape must be rank 4 but is rank 5 for 'conv2_1/Conv2D' (op: 'Conv2D') with input shapes: [1,?,1,224,64], [3,3,64,128].

下面是代码:with tf.name_scope('conv1_2') as scope:

kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 64], dtype=tf.float32,

stddev=1e-1), name='weights')

conv = tf.nn.conv2d(self.conv1_1, kernel, [1, 1, 1, 1], padding='SAME')

biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),

trainable=True, name='biases')

out = tf.nn.bias_add(conv, biases)

self.conv1_2 = tf.nn.relu(out, name=scope)

self.parameters += [kernel, biases]

self.pool1=tf.reduce_max(self.conv1_2,reduction_indices=[1], keep_dims=True)

# conv2_1

with tf.name_scope('conv2_1') as scope:

kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,

stddev=1e-1), name='weights')

sess = tf.InteractiveSession()

tf.Print(self.pool1,[self.pool1],message="hellow fatima")

conv = tf.nn.conv2d([self.pool1], kernel, [1, 1, 1, 1], padding='SAME')

biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),

trainable=True, name='biases')

out = tf.nn.bias_add(conv, biases)

self.conv2_1 = tf.nn.relu(out, name=scope)

self.parameters += [kernel, biases]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值