2013 astar 3-23 题目一

【题目大意】

             有N个连续的任务,完成每个任务需要一定的时间,有K个可以同时工作的机器,问最少要多长时间可以完成所有任务?注意任务的安排的连续的,安排在同一台机器上的任务顺序是连续的,完成所有任务的最少时间就是耗时最长的那个机器所需的时间。

             例如: N=5   K=2    5 4 7 3 2   最小的安排是 (5 4)( 7 3 2)   12 。

【问题求解】

      我想到了一种DP方法,f[i][j] 表示前i个任务用j个机器需要的最短时间;sum[v]表示前v项和。

      f[i][j]=min(min(f[q][j]+sum[i]-sum[q]),min(max(f[t][j-1],sum[i]-sum[t])))   其中 0<=q,t<i     f[i][1]=sum[i];   f[0][j]=sum[0];

             想了想,n3的复杂度啊, n<=10000 ,无法忍受。

             第二天,我网上找了个更好的方法:     


                首先二分最终答案,从大到小,对于每种答案,看是否能找到相应的分配方案,如果不可行,说明答案一定比当前大,反之可能更小有这单调性就可以二分答案了。对于验证是否存在答案为P的可能的分组情况,用点贪心的思想,就是尽可能让分组内的时间和最大,且不超过P,如果分完K个尽可能大的分组还不能用完所有任务,则答案P为不可能,若分完所有任务用的分组小于等于K,则是可行的。由于sum[v]是单调增的,所以分配任务给一个组的过程也可通过二分组的结束位置来确定。如此一来整个程序的算法复杂度为 k*logN*logN。

 

转载于:https://www.cnblogs.com/wuminye/archive/2013/03/24/2979814.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值