openface 训练数据集

训练深度网络模型
OpenFace还不是运用faceNet的model作为训练模型,所以在准确性上比faceNet要低,如果你只是做一个简单的分类,建议你看看官网的demo3(http://cmusatyalab.github.io/openface/demo-3-classifier/),如果你想自己训练一个模型,建议提供一个大于500k的图片集作为训练集。(这里的500k应该是50w张图片来理解更合适)
Openface暂时还没提供该faceNet模型的支持。
注意:在K40Gpu的机器上训练数据估计要耗费很多的内存还有一整天的时间,所以务必准备相应的硬件支持。

1)创建原生图片目录data/mydataset/raw
Raw目录下再建立各个分类目录,这些分类目录的名字将是分类的标签名,在子目录下面就存放各个分类的图片。

2)预处理原生图片
如果你想比较你图片集跟LFW数据集的准确率,你可以使用项目中提供的脚本来清除你图片集中带有LFW特征的图片(data/casia-facescrub/remove-lfw-names.py)
我们启用8个线程来预处理图片:

for N in {1..8}; do ./util/align-dlib.py <path-to-raw-data> align outerEyesAndNose <path-to-aligned-data> --size 96 & done

注:<> 括号里是自己的目录,自己需要根据实际改写
然后修剪生成分类目录,在每个分类目录下存放3张精选的图片:

./util/prune-dataset.py <path-to-aligned-data> --numImagesThreshold 3

注:3这个阈值,你可以根据情况自己设置


3)训练模型
执行 training/main.lua文件去训练模型(在 training/opts.lua文件里编辑选项或者通过命令行传参执行)然后会产生损失函数和处理模型到training/work这个目录里。对于GPU内存来说,大概需要耗费128G内存,需设置-peoplePerBatch和-imagesPerPerson(默认分别是15和20)来减少内存的消耗。(这些参数可限制每批次处理的上限)

注意:数据目录的metadata(元数据)存放在缓存里training/work/trainCache.t7;如果数据目录发生改变了,删除这些元数据,他会重新生成一个。

停止或者重启训练
每次训练迭代都会把模型存放在work里面,如果训练进程被kill掉,你可以通过-retain参数重启。你也可以设置不同人工种子-manualSeed来作为图片序列采样,-epochNumber设置迭代次数。

这里需要你懂点lua语言的应用的,不然真的一头雾水,主要的翻译就这样了


4)分析训练结果
验证损失函数: training/plot-loss.py.
需要装相应的依赖,相应依赖存放在 training/requirements.txt,可以执行以下命令安装:

pip2 install -r requirements.txt

模型的正确率:
Openface 官方有说明默认是使用nn4.small2,有3733968个参数,预计准确率为93左右
LFW数据集在国外训练model挺流行,可是在国内感觉不怎么行,毕竟采集的人物大都是外国人为准;关于模型的正确率,你可以参考这个链接:
http://cmusatyalab.github.io/openface/models-and-accuracies/

http://cmusatyalab.github.io/openface/training-new-models/

 

转载于:https://www.cnblogs.com/minsons/p/7929453.html

### 回答1: iemocap数据集是一种用于情感识别研究的公开数据集,其目的是为研究者提供一个用于识别和分析人类情感状态的基准数据。 iemocap数据集使用了认知情感模型,通过记录人际交流中的语音、文本和肢体动作等多种情感表达形式,提供了一个多模态的研究平台。 该数据集包含了不同情感状态下的语音和面部表情数据,以及对话参与者的情感标注。数据集中的情感状态包括愤怒、悲伤、开心、中性等。 iemocap数据集的基本构成是对话音频文件,每个音频文件包含了多个对话段落。其中,每一个对话段落对应一个情感标签。此外,数据集还包含了使用OpenFace工具进行面部表情分析的结果。 研究者可以利用iemocap数据集开展各种情感识别算法的开发和评估。比如,可以利用该数据集训练机器学习模型,通过对语音和面部表情进行特征提取和分类,实现情感状态的识别。 除了情感识别,iemocap数据集还可用于其他相关领域的研究,例如语言研究、社交交互研究等。 总的来说,iemocap数据集是一个有助于情感识别研究的公开数据集,为研究人员提供了一个研究情感识别算法和模型的基准平台。 ### 回答2: IEMOCAP数据集是一个包含真实情绪表达的多模态数据库,在情绪声音处理领域非常有名。该数据集收集了10位演员在会议场景下进行表演的音频、视频和文本等多种模态的数据。 IEMOCAP数据集的目的是为情感识别和情绪分析提供一个标准的测试平台。该数据集包含了丰富的情绪表达,其中包括六种基本情绪的标签:愤怒、开心、中性、伤心、惊讶和厌恶。这些多模态数据可以用于情感识别、语音情感识别、情感合成和情感计算等多个领域的研究。 IEMOCAP数据集包含了大量的情感声音数据,每个演员都有大约40分钟的语音数据,总共有超过12小时的语音数据。这些数据中包含了不同音频特征(如语速、音调、能量等)以及用于情感识别的音频标签。此外,数据集还包含了演员的面部表情、手势和动作等视频数据,以及他们的语言交互和文本注释。 IEMOCAP数据集的使用非常广泛,被用于情感识别和情绪分析的研究中。在情感识别方面,可以通过深度学习模型来提取音频和视频特征,训练分类器以实现情感分类。在情绪分析方面,可以通过分析不同模态数据之间的关联性,来研究情绪的生成和表达方式。 总之,IEMOCAP数据集是一个非常有价值的情感识别和情绪分析研究资源。它提供了丰富的真实情感数据,被广泛应用于语音情感识别、情感合成和情感计算等领域的研究中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值