probabilistic robotics_bayes filter

贝叶斯滤波

 

执行测量后的后验概率:

 

执行测量前的先验概率:

执行测量后的后验概率推导

根据式2.23的推导方式

 

可推出

 

假定xt是complete,即xt可以完全决定测量结果,那么则有2.56式:

 

带入2.55可得出2.57与2.58式

1、      注意2.55式的推导,贝叶斯学派,逗号优先级高,逗号连接的同为条件。再运用条件概率公式即可。

2、      的物理含义,因都是测量值,可理解为传感器精度。

 

在以前测量的基础上现在测量准确的概率。

 

执行测量前的先验概率:

 

 

 

 

  机器人的动态变化与环境特性由两种概率来表示,一种是状态转移概率,描述状态随时间的变化,一种是测量概率,描述传感器对环境的感知。

  贝叶斯滤波为计算后验概率分布,输入量为历史所有的测量值与控制值。通过迭代实现。

转载于:https://www.cnblogs.com/phldylj/p/7324428.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值