本篇文章给大家分享的内容是python归一化多维数组的方法 ,具有一定的参考价值,有需要的朋友参考一下
今天遇到需要归一化多维数组的问题,但是在网上查阅了很多资料都是归一化数组的一行或者一列,对于怎么归一化一个多维数组的资料比较少,可是在tensorflow中为了训练神经网络常常需要用到多维数据。因此归一化多维数组非常有必要。
在查阅了大量资料之后发现在sklearn库中的preprocessing可以直接归一化多维数组。
1、使用sklearn.preprocessing.scale()函数,对给定数据进行标准化:具体公式是(x - mean)/std。其含义是:对每一列的数据减去这一列的均值,然后除以这一列数据的标准差。最终得到的数据都在0附近,方差为1。具体程序示例如下:from sklearn import preprocessing
data_normal = preprocessing.scale(data)#data是多维数据
2、使用sklearn.preprocessing.StandardScaler类,这个类可以计算每一列数据的均值和方差,并根据均值和方差直接把原始数据归一化。简单示例如下:from sklearn import preprocessing
#计算原始数据每行和每列的均值和方差,data是多维数据
scaler = preprocessing.StandardScaler().fit(data)
#得到每列的平均值,是一维数组
mean = scaler.mean_
#得到每列的标准差,是一维数组
std = scaler.std_
#标准化数据
data_nomal = scaler