python 按列归一化_python归一化多维数组的方法

本文介绍了如何使用Python的sklearn库对多维数组进行归一化,包括scale()函数、StandardScaler类和MinMaxScaler类的应用,以及正则化的normalize()和Normalizer()方法。这些技巧在处理神经网络数据时尤其有用。
摘要由CSDN通过智能技术生成

本篇文章给大家分享的内容是python归一化多维数组的方法 ,具有一定的参考价值,有需要的朋友参考一下

今天遇到需要归一化多维数组的问题,但是在网上查阅了很多资料都是归一化数组的一行或者一列,对于怎么归一化一个多维数组的资料比较少,可是在tensorflow中为了训练神经网络常常需要用到多维数据。因此归一化多维数组非常有必要。

在查阅了大量资料之后发现在sklearn库中的preprocessing可以直接归一化多维数组。

1、使用sklearn.preprocessing.scale()函数,对给定数据进行标准化:具体公式是(x - mean)/std。其含义是:对每一列的数据减去这一列的均值,然后除以这一列数据的标准差。最终得到的数据都在0附近,方差为1。具体程序示例如下:from sklearn import preprocessing

data_normal = preprocessing.scale(data)#data是多维数据

2、使用sklearn.preprocessing.StandardScaler类,这个类可以计算每一列数据的均值和方差,并根据均值和方差直接把原始数据归一化。简单示例如下:from sklearn import preprocessing

#计算原始数据每行和每列的均值和方差,data是多维数据

scaler = preprocessing.StandardScaler().fit(data)

#得到每列的平均值,是一维数组

mean = scaler.mean_

#得到每列的标准差,是一维数组

std = scaler.std_

#标准化数据

data_nomal = scaler

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值