用计算机模拟无理数e的计算,动图讲解自然常数e,无理数e带你发现数学之美!...

e 的来历

与我们更熟知的两个无理数 Pi 和 √2 不同, 它不是由数学家由几何问题上发现而来的, 而是出自一个金融问题. 我们说 e 表示增长率和变化率的常数. 但是它为什么和增长率有关呢? 让我们回到来 17 世纪, 看看发现 e 的第一人:数学家雅各布·伯努利以及他所研究的相关问题. (下图为伯努利家族以及欧拉)

149590892_2_20181215044319700.jpeg

假设在银行存了 1 $ , 而银行提供的年利率是 100%, 也就是说 1 年后连本带息, 你会得到 2 块钱. 这个非常容易理解是吧?

那么现在假设半年就计算一次利息, 就是半年利率为 50% , 这种方案最终一年后的收益会不会比刚才更好一些呢? 计算如下过程: 年中计息一次总共是 1.5 $, 然后下半年连本带息年末就为 2.25 $:

149590892_3_20181215044319825.jpeg

这样看来一年后共会获得 2.25 块钱. 恩, 看起来不错啊! 那现在计算利率周期如果再短一些会怎么呢? 再来假设每个月结算一次呢? 月利率为 1/12 , 最终得到大约 2.61304 块钱, 这个方案会又好一些。

149590892_4_20181215044319950.jpeg

现在可以看出这样的规律, 利息的周期越短, 收益就更好. 那就让我们继续缩短计息的周期, 变为每周计算, 计息的次数就是 52 次。

149590892_5_2018121504432013.jpeg

甚至可以计算天利率, 或者小时, 秒来计算. 当然年末所获得的钱亦会增多. 不过雅各布.伯努利发现随着 n 趋于无穷, 对于这样的连续复利存在着一个极限值, 这个数值其实就是 e:

149590892_6_2018121504432091.gif

也就是对于这个式子的极限值将是多少呢?

149590892_7_20181215044320216.jpeg

伯努利知道会是一个 2~ 3 直接的数, 但最终的的结果很可惜他并没有计算出来. 这个问题由 50 年后的莱昂哈德·欧拉借助下面的公式计算出来小数点后 18 位 。2.718281828459045235...... 这就是描述增长率的自然常量 e 来历。

149590892_8_20181215044320278.jpeg

e 是无理数

并且欧拉借助连分式的形式证明了 e 是一个无理数, 观察这个连分数的形式(最左侧) 1,1,4,1,1,6,1,1,8,1,1,10.... 也就是说这种能够一直被处下去的连分数, 那就意味着它是个无理数。

149590892_9_20181215044320357.gif

e 在微积分中性质

e 是描述增长率的自然常量, 并且还是唯一具有下面性质的函数: 这个函数曲线上的每一个点的 y 值, 在该点的斜率和面积都是相同的. x =1 时, 函数值就等于 e. 斜率也是 e, 而曲线下的面积也是 e。

149590892_10_20181215044320497.gif

也正是因为这主要性质, 使得它成为了微积分的你最喜欢见到函数(微积分也正是描述变化率, 极限求和的数学). 所以当在微积分课程中, 凡是遇到 e 的计算, 计算会简单一些。

e 出现在最美数学公式 - 欧拉恒等式

最后既然提到了 e , 通常会提到将所有著名的常数出现在同一个方程 - 欧拉恒等式(Euler's identity), e^(iπ)+1=0。被誉为最美的数学公式。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值