题目直达车: POJ 1185 炮兵阵地
分析:
列( <=10 )的数据比较小, 一般会想到状压DP.
Ⅰ、如果一行10全个‘P’,满足题意的状态不超过60种(可手动枚举)。
Ⅱ、用DFS搜出所有可能表示状态的整数(二进制1表示可以放,0则不能)。
Ⅲ、对每一行的地行进行状态处理(p[i]表示第i行地形的状态),二进制‘H’转1,‘P’转0;
Ⅳ、用dp[i][j][k]表示第i行,且i行状态为j,i-1行状态为k时,最多能放置的量。
Ⅴ、对于第i行的可行状态必须满足:
⒈ j & k =0 且 j & t =0 (t为第i-2行放置状态)与前两行匹配,即不互相攻击。
⒉ j & p[i] = 0 与地形匹配,即只放平原地带。
Ⅵ、转移方程:dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][t]+num[j])
(num[j]为第j种状态中放置炮兵的数量)
第一次做状态DP, 参考(题解报告)的思路才敲出来
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<vector>
using namespace std;
int p[105],dp[105][65][65];
vector<int>M[11];
int a[11],n,m;
void DFS(int k,int t){ ///搜索m=t时如果全为'P'可以表示状态的整数
if(k==t){
int p=0;
for(int i=0;i<t;++i)
if(a[i]) p=p|(1<<i);
M[t].push_back(p); /// 记下能表示状态的整数
return;
}
for(int i=0;i<=1;++i){
if(i&&((k&&a[k-1])||(k>1&&(a[k-1]||a[k-2])))) continue;
a[k]=i;
DFS(k+1,t);
}
}
int main(){
for(int i=1;i<=10;++i) DFS(0,i);
while(~scanf("%d%d",&n,&m)&&n+m){
p[0]=0;
///num[i]记下用第i种状态(整数M[m][i]表示) 中设了多少炮兵部队
int num[65], len=M[m].size();
for(int i=0;i<len;++i)
num[i]=__builtin_popcount( M[m][i] ); ///计算M[m][i]中二进制中1的个数
memset(dp,0,sizeof(dp));
int Max=0;
for(int i=1;i<=n;++i){
char ch[105]; scanf("%s",ch);
p[i]=0;
//预处理地形(1代表'H',0代表'P')
for(int j=0;j<m;++j) if(ch[j]=='H') p[i]|=(1<<j);
if(i==1){ //初始化第一行所有布置情况
for(int k=0; k<len; ++k)
for(int j=0; j<len; ++j){
if(!(M[m][k]&p[1])) dp[1][k][j]=num[k];
else dp[1][k][j]=0;
Max=max(Max,dp[1][k][j]);
}
continue;
}
for(int j=0; j<len; ++j)//当前行
if(!(M[m][j]&p[i])) //与 地形匹配
for(int k=0; k<len; ++k)//i-1
if(!(M[m][k]&p[i-1])&&!(M[m][k]&M[m][j]))//与 地形、i-1行匹配
for(int t=0; t<len; ++t)//i-2
//与 地形、i-1行、i-2行匹配
if(!(M[m][t]&p[i-2])&&!(M[m][t]&M[m][k])&&!(M[m][t]&M[m][j])){
dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][t]+num[j]);
if(i==n)Max=max(dp[i][j][k],Max);
}
}
printf("%d\n",Max);
}
return 0;
}