炮兵阵地
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 33176 | Accepted: 12787 |
Description
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
Input
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。
Output
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input
5 4 PHPP PPHH PPPP PHPP PHHP
Sample Output
6
Source
一、原题地址
二、大致题意
中文题
三、大致思路
预处理出每一行可行的方案,这样每一行的情况就从(1<<10)种变成大概60多种,这样三次方地枚举三行的状态就可以更新答案啦。
dp[ i ][ j ][ k ]表示更新到第 i 行时,状态为state[ j ],且前一行状态为state[ k ]时的最多摆放情况。
三维的dp就可以罗列出i-2行的情况啦。
四、代码
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<algorithm>
#include<vector>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
typedef long long LL;
int n,m;
char mmp[105][20];
int dp[105][100][100];
int num[100],state[100],dat[105];
int tot;
void init()
{
for(int i=1;i<=n;i++)
{
scanf("%s",mmp[i]+1);
for(int j=1;j<=m;j++)
{
if(mmp[i][j]=='H')dat[i]|=(1<<(m-j));
}
}
tot=0;
for(int i=0;i<(1<<m);i++)
{
int nx=i;
int cnt=0;
if( (i>>1)&i || (i>>2)&i )continue;
while(nx)
{
if(nx&1)cnt++;
nx>>=1;
}
state[tot]=i;
num[tot++]=cnt;
}
return ;
}
int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
memset(num,0,sizeof(num));
memset(state,0,sizeof(state));
memset(dat,0,sizeof(dat));
init();
int ans=0;
for(int i=0;i<tot;i++)
{
if(state[i]&dat[1])continue;
dp[1][i][0]=num[i];
ans=max(ans,dp[1][i][0]);
}
if(n==1)
{
printf("%d\n",ans);
continue;
}
for(int i=0;i<tot;i++)
{
if(state[i]&dat[2])continue;
for(int j=0;j<tot;j++)
{
if(state[i]&state[j])continue;
dp[2][i][j]=max(dp[2][i][j],dp[1][j][0]+num[i]);
ans=max(ans,dp[2][i][j]);
}
}
if(n==2)
{
printf("%d\n",ans);
continue;
}
for(int i=3;i<=n;i++)
{
for(int j=0;j<tot;j++)
{
if(state[j]&dat[i])continue;
for(int k=0;k<tot;k++)
{
if(state[j]&state[k])continue;
for(int q=0;q<tot;q++)
{
if(state[j]&state[q])continue;
dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][q]+num[j]);
ans=max(ans,dp[i][j][k]);
}
}
}
}
printf("%d\n",ans);
}
return 0;
}