POJ1185炮兵阵地(状压DP)

                                                                                              炮兵阵地

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 33176 Accepted: 12787

Description

司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示: 


如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。 

Input

第一行包含两个由空格分割开的正整数,分别表示N和M; 
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。N <= 100;M <= 10。

Output

仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。

Sample Input

5 4
PHPP
PPHH
PPPP
PHPP
PHHP

Sample Output

6

Source

Noi 01

 

一、原题地址

点我传送

 

二、大致题意

中文题

 

三、大致思路

预处理出每一行可行的方案,这样每一行的情况就从(1<<10)种变成大概60多种,这样三次方地枚举三行的状态就可以更新答案啦。

dp[ i ][ j ][ k ]表示更新到第 i 行时,状态为state[ j ],且前一行状态为state[ k ]时的最多摆放情况。

三维的dp就可以罗列出i-2行的情况啦。

 

四、代码

#include<iostream>
#include<string>
#include<set>
#include<map>
#include<algorithm>
#include<vector>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
const int inf=0x3f3f3f3f;
typedef long long LL;


int n,m;
char mmp[105][20];
int dp[105][100][100];
int num[100],state[100],dat[105];
int tot;
void init()
{
    for(int i=1;i<=n;i++)
    {
        scanf("%s",mmp[i]+1);
        for(int j=1;j<=m;j++)
        {
            if(mmp[i][j]=='H')dat[i]|=(1<<(m-j));
        }
    }
    tot=0;
    for(int i=0;i<(1<<m);i++)
    {
        int nx=i;
        int cnt=0;
        if(  (i>>1)&i || (i>>2)&i )continue;
        while(nx)
        {
            if(nx&1)cnt++;
            nx>>=1;
        }
        state[tot]=i;
        num[tot++]=cnt;
    }
    return ;
}
int main()
{
    while(scanf("%d %d",&n,&m)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        memset(num,0,sizeof(num));
        memset(state,0,sizeof(state));
        memset(dat,0,sizeof(dat));
        init();
        int ans=0;
        for(int i=0;i<tot;i++)
        {
            if(state[i]&dat[1])continue;
            dp[1][i][0]=num[i];
            ans=max(ans,dp[1][i][0]);
        }
        if(n==1)
        {
            printf("%d\n",ans);
            continue;
        }
        for(int i=0;i<tot;i++)
        {
            if(state[i]&dat[2])continue;
            for(int j=0;j<tot;j++)
            {
                if(state[i]&state[j])continue;
                dp[2][i][j]=max(dp[2][i][j],dp[1][j][0]+num[i]);
                ans=max(ans,dp[2][i][j]);
            }
        }
        if(n==2)
        {
            printf("%d\n",ans);
            continue;
        }
        for(int i=3;i<=n;i++)
        {
            for(int j=0;j<tot;j++)
            {
                if(state[j]&dat[i])continue;
                for(int k=0;k<tot;k++)
                {
                    if(state[j]&state[k])continue;
                    for(int q=0;q<tot;q++)
                    {
                        if(state[j]&state[q])continue;
                        dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][q]+num[j]);
                        ans=max(ans,dp[i][j][k]);
                    }
                }
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值