[洛谷P2261]余数求和[除法分块]

洛谷P2261


来讲一下下我对除法分块的理解
我看了一堆大佬的博客才搞懂啊
除法分块适用于给定n,k求型如
\[ \sum_{i=1}^{n}\frac{k}{i} \]
的式子
可将\(O(n)\)的复杂度降至\(O(\sqrt n)\)
首先定义\(l=1,r\)
其次有
\[r=min(n,\left \lfloor \frac {k}{\left \lfloor \frac{k}{l} \right \rfloor} \right \rfloor)\]
可以在\(O(1)\)的时间内递推出结果
在l~r内所得的商是相同的(自行打表验证)
容易证明(其实我也不会)这一段的商均为\(\left \lfloor \frac{k}{l} \right \rfloor\)
然后再\(l=r+1\)
\(l>n\)则退出循环
\(l>k\)\(r=n\)防止出现除0的情况
贴个板题代码
作变换
\begin{split}
\sum_{i=1}^{n}k\ mod \ i &=\sum_{i=1}^{n}(k-i* \left \lfloor \frac{k}{i} \right \rfloor) \newline
&=n* k-\sum_{l<=n}(r-l+1)* \frac{r+l}{2} * \left \lfloor \frac{k}{l} \right \rfloor
\end{split}
其中\((r-l+1)\)是区间长度,\(\frac{r+l}{2}\)\(i\)的平均值,\(\left \lfloor \frac{k}{l} \right \rfloor\)是区间内的商
公式推出来了代码就好写了

#include<bits/std++.h>
using namespace std;
long long minn(long long a,long long b)
{
    if(a<b) return a;
    return b;
}

int main()
{
    long long n,k;
    scanf("%lld%lld",&n,&k);
    long long ans=n*k;
    long long l=1,r;
    for(;l<=n;l=r+1)
    {
        if(k/l) r=minn(n,(k/(k/l)));
        else r=n;
        ans-=(k/l)*(r-l+1)*(l+r)/2;
    }
    printf("%lld",ans);
    return 0;
}

转载于:https://www.cnblogs.com/123789456ye/p/11066741.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值