TensorFlow简易学习[1]:基本概念和操作示例

简介

  TensorFlow是一个实现机器学习算法的接口,也是执行机器学习算法的框架。使用数据流式图规划计算流程,可以将计算映射到不同的硬件和操作系统平台。

主要概念

  TensorFlow的计算可以表示为有向图(directed graph),或者计算图(computation graph)计算图描述了数据的就算流程,其中每个运算操作(operation)作为一个节点(node),节点与节点之间连接称为(edge)。在计算图变中流动(flow)的数据被称为张量(tensor),故称TensorFlow。

                                                                      

                              计算图实例[ref1]

  具体说,在一次运算中[ref2]:

    1. 使用图 (graph) 来表示计算任务:基本操作示例

    2. 在被称之为 会话 (Session) 的上下文 (context) 中执行图基本操作示例

    3. 通过 变量 (Variable) 维护状态基本操作示例。

 

代码实例

 完整示例:

#!/usr/bin/pyton

'''
A simple example(linear regression) to show the complete struct that how to run a tensorflow

create_data -> create_tensorflow_struct->start session
create date: 2017/10/20

''' import tensorflow as tf import numpy as np #create data x_data = np.random.rand(100).astype(np.float32) y_data = x_data*0.1 + 0.3 ###create tensorflow structure begin## Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) biases = tf.Variable(tf.zeros([1])) y = Weights*x_data + biases loss = tf.reduce_mean(tf.square(y-y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) #when define variables, initialize must be called #init = tf.initialize_all_variables() ### create tensorflow structure end ### sess = tf.Session() #note: initialize_local_variables no more support in new version if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() sess.run(init) for step in range(201): sess.run(train) if step % 20 == 0: #session controls all opertions and varilables print(step, sess.run(Weights), sess.run(biases)) sess.close()

  计算结果:

  

 

基本操作示例

  Session操作: 
#!/usr/bin/python

'''
A example to show how to call session

create date: 2017/10/20
'''

import tensorflow as tf #1. 定义一个操作 m1 = tf.constant([[2, 2]]) m2 = tf.constant([[3], [3]]) dot_opeartion = tf.matmul(m1, m2) #2. 调用session实现 # 图画好以后,需要通过session来控制执行,让图来运行 # 另外每一个图中的操作都需要通过session来控制 # print result #method1 use session sess = tf.Session() result = sess.run(dot_opeartion) print(result) sess.close() #method2 use session with tf.Session() as sess: result_ = sess.run(dot_opeartion) print(result_) 

##output
[[12]]
[[12]]

  

  Placeholder操作
#!/usr/bin/python

'''
A example to show how to call placehoder(类似于占位符)

create date: 2017/10/20
'''

import tensorflow as tf #1. 声明placehoder:待传入值 x1 = tf.placeholder(dtype=tf.float32, shape=None) y1 = tf.placeholder(dtype=tf.float32, shape=None) z1 = x1 + y1 x2 = tf.placeholder(dtype=tf.float32, shape=None) y2 = tf.placeholder(dtype=tf.float32, shape=None) z2 = tf.matmul(x2, y2) #2. 调用session,传入值 with tf.Session() as sess: #when only one operation to run #feed_dict: input the values into placeholder z1_value = sess.run(z1, feed_dict={x1: 1, y1:2}) # when run multiple operaions #run the two opeartions together z1_value, z2_value = sess.run( [z1, z2], feed_dict={ x1:1, y1:2, x2:[[2],[2]], y2:[[3,3]] } ) print(z1_value) print(z2_value)

  

  Variable操作
#!/usr/bin/python

'''
A example to show how to call variables

create date: 2017/10/20
'''

import tensorflow as tf # 1.stuct #our first variable in the "global_variable" set var = tf.Variable(0) add_operation = tf.add(var,1) #把add_operation值给var update_operation = tf.assign(var, add_operation) # once define variables, you have to initialize them by doing this init = tf.global_variables_initializer() # 2. call session with tf.Session() as sess: sess.run(init) for count in range(3): sess.run(update_operation) print(sess.run(var))

 

 --------------------------------------

说明:本列为前期学习时记录,为基本概念和操作,不涉及深入部分。文字部分参考在文中注明,代码参考莫凡 

 

转载于:https://www.cnblogs.com/space-place/p/7889707.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值