C++跟C#获取电脑上连接的多个摄像头名称与编号

1、其中C++获取多个摄像头的名称,然后根据名称对应其编号,从而可以使用opencv进行按编号打开特定的摄像头: #include<iostream> #include "strmif.h" #include <initguid.h...

2019-04-10 16:35:30

阅读数 6

评论数 0

pycharm进行代码编写的常用快捷键

Ctrl+Home=>头部 Ctrl+End=>尾部 快速生成try…catch… 对代码进行快速添加外部代码例如添加try....except.... Ctrl+Alt+t,选中要被包裹的代码块,按下快捷键,选择try/except即可 ...

2019-04-10 11:44:40

阅读数 9

评论数 0

python查版本信息。

1、查看某个安装包的版本信息指令: python -m django --version 如果是查看其它安装包的信息则改为其它包名即可。

2019-04-09 21:33:32

阅读数 28

评论数 0

ARM下的加速库

1、ARM下的加速库: ARM下的可以采样NEON优化提高处理速度。

2019-03-16 15:19:51

阅读数 43

评论数 1

zip迭代tensor数据、求topk的简单方法,shape[:-1],[::-1]的用法

1、zip函数可以获取可迭代数据的元素,其中包括各种list、tuple、Tensor等元素 下面是一个例子: testzip = [[1, 2], [1, 3], [2, 3], [3, 3]] print("单参数时的输出:") for tuplesin in zi...

2019-03-14 15:00:32

阅读数 55

评论数 0

pytorch进行上采样的种类

1、其中再语义分割比较常用的上采样: 其实现方法为: def upconv2x2(in_channels, out_channels, mode='transpose'): if mode == 'transpose': # 这个上采用需要设置其输入通道,输出通道.其...

2019-02-26 16:40:28

阅读数 176

评论数 0

pytorh实现inception多分支跟辅助分类、resnet里shortcut、densenet、 DepthWise深度可分离卷积、ShuffleNet的channel shuffle

参考博客:变形卷积核、可分离卷积?卷积神经网络中十大拍案叫绝的操作。 pytorch微调网络Inception3  CNN网络架构演进:从LeNet到DenseNet 1、inception的多分支卷积: 最初的Inception的卷积如下: 其是对输入进行多个卷积处理,往往比单一卷...

2019-02-26 11:09:02

阅读数 84

评论数 0

精简CNN模型以ShuffleNet v2 为例子解释,移动端网络设计的需要的规则ARM、GPU上对比,各种卷积方式的演变跟介绍

参考博客:深度学习【57】ShuffleNet V2  --最好的,下面的文章有些公式显示不了。看这个链接最好 shufflenet部分网络结构  - 变形卷积核、可分离卷积?卷积神经网络中十大拍案叫绝的操作。 --要看 介绍 才不久才刚刚写了MobileNet v2的博客,它来自Goog...

2019-02-25 10:34:55

阅读数 93

评论数 0

opencv的初始化Mat、SVM

1、通过数组指针进行初始Mat变量: 例如: uchar arr[4][3] = { { 1, 1,1 },{ 2, 2,2 },{ 3, 3,3 },{ 4,4, 4 } }; cv::Mat srcData(4, 3, CV_8UC1, arr); cout &...

2019-02-20 15:52:50

阅读数 41

评论数 0

yeild、keras深度通过numpy初始化variable、merge,pytorch训练可视化visdom、进行数据的深拷贝

最好的yeild解释网站:Python yield 使用浅析其里面有解释怎么判断一个函数是不是generator https://www.jianshu.com/p/d09778f4e055 1、yeild的使用,代码例子如下: def yield_test(n, index): ...

2019-02-13 18:31:26

阅读数 81

评论数 0

2

import numpy as np import torch.nn import tensorflow as tf def main(labels): label = labels label_list = [] for label in labels: ...

2019-01-24 22:22:39

阅读数 70

评论数 1

PyTorch中使用预训练的模型初始化网络的一部分参数(增减网络层,修改某层参数等) 固定参数

  有国才有家,支持国产,生活中点滴做起,买手机就买华为,这是我们国家IT界的脊梁!!! 在预训练网络的基础上,修改部分层得到自己的网络,通常我们需要解决的问题包括:  1. 从预训练的模型加载参数  2. 对新网络两部分设置不同的学习率,主要训练自己添加的层  一. 加载参数的方法:  加载参...

2019-01-20 16:22:00

阅读数 134

评论数 0

python按比例拆分数据集成训练跟验证集。使用glob、os.walk来获取路径进行数据集粗分。

好的工具可以让工作完成的事半功倍,非常完美。 1、通过代码把各种把已经分好类别的按比例划分未训练集、测试集: # ratio是测试集的比例 def split_train_test(path,ratio): #列出当前文件从夹下的所有文件名称,包括文件跟文件夹 dirs = ...

2019-01-18 20:11:25

阅读数 104

评论数 0

使用debugView进行调试代码,这样子就省了控制log文件的问题

介绍:debugview 可以捕获程序中由TRACE(debug版本)和OutputDebugString输出的信息。支持Debug、Release模式编译的程序。其还支持输出信息过滤,可以过滤掉很多无用的输出信息,它这个过滤不是过滤已经输出的信息,而是过滤接下来会接收到的debug打印信息。所以...

2019-01-17 18:54:04

阅读数 90

评论数 0

如何使的VS在re'lease模式下能够调试。能实现debug下大部分功能,使用低版本VS调用高版本的VS打包的动态库

1、如何使的VS在release模式下能够调试。能实现debug下大部分功能;   因为release模式下调试速度比在debug模式快很多。很多刚装的VS一般使无法在release模式下打断点的,断电一般会提示:“无法命中次断点”;下面就是设置如何在release模式下打上断点:   具体操...

2019-01-07 16:59:37

阅读数 66

评论数 0

pytorch里cat、stack、unsqueeze、squeeze、自带网络自适应输入大小方法、初始化一个输入获取最后一层特征向量的维度大小,empty、random_初始化Tensor。

1、其中cat是用于拼接矩阵数据: 参考:pytorch中的cat、stack、tranpose、permute、unsqeeze #把数据1跟数据2进行按行拼接,其中0,表示按行,如果1则表示按列 outputssum = torch.cat((outputs1, outputs2), 0...

2019-01-04 16:08:27

阅读数 387

评论数 0

FaceNet的一些网络训练评估

1、其中主要的损失triplet loss 原理 triplet loss代码如下: def triplet_loss(anchor, positive, negative, alpha): """Calculate the tr...

2019-01-04 15:57:21

阅读数 178

评论数 0

使用CuDNN进行卷积操作的知识点

参考博客:使用CuDNN进行卷积运算  

2018-12-28 17:03:06

阅读数 83

评论数 0

git 常用指令

1、查看本地git add ./指令后查看暂缓区里的文件内容(如果没进行commit操作,这个add会把新旧文件一起放到暂缓区,如果在add后本地删除了某个文件,再进行add,其暂缓区会保留有这个文件的): git ls-files 查看本此指令操作新进行的状态(即此次提交进行的改动即改动...

2018-12-04 15:06:37

阅读数 103

评论数 0

pytorch里optimizer作用、自动求导autograd,from_numpy、numpy()等函数声明变量时候的浅拷贝、显卡内存 out of memory

1、其中optimizer的作用,其主要起到的作用就是进行权重的更新,如下: net=models.resnet50(pretrained=False) learning_rate=0.01 # 权重更新 如果使用自带的optimizer函数进行梯度更新,效率更好,因为其还可以引入梯度 #下降...

2018-11-21 10:30:31

阅读数 324

评论数 0

提示
确定要删除当前文章?
取消 删除