【BZOJ4833】最小公倍佩尔数(min-max容斥)

【BZOJ4833】最小公倍佩尔数(min-max容斥)

题面

BZOJ

题解

首先考虑怎么求\(f(n)\),考虑递推这个东西
\((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2)=e(n)+f(n)\sqrt 2\)
拆开之后可以得到:\(e(n)=e(n-1)+2f(n-1),f(n)=f(n-1)+e(n-1)\)
把每一层的\(e\)都给展开,得到:\(\displaystyle f(n)=1+f(n-1)+2\sum_{i=1}^{n-2}f(i)\)
然后差分搞搞,\(\displaystyle f(n)-f(n-1)=f(n-1)-f(n-2)+2*f(n-2)\)
得到\(f(n)=2f(n-1)+f(n-2)\),特殊的\(f(0)=0,f(1)=1\)
然后我们发现要求\(lcm\),那么就先考虑\(f(a)\)\(f(b)\)\(gcd\)是什么。
这个东西显然可以类似斐波那契数列那样子利用辗转相减得到\(gcd(f(a),f(b))=f(gcd(a,b))\)
接下来就可以考虑怎么求答案了。
然后\(lcm\)的式子是对于每个质因子,考虑其\(max\)
考虑\(min-max\)容斥,把\(max\)变成\(min\),那么就可以从\(lcm\)变成\(gcd\)
然后把\(min-max\)容斥的式子给写出来:
\[max(S)=\sum_{T\subset S}(-1)^{|T|+1}min(T)\]
套到\(lcm\)上就是:
\[lcm(S)=\prod_{T\subset S}gcd(T)^{(-1)^{|T|+1}}\]
那么就有
\[g(n)=\prod_{T\subset S}f_{gcd(T)}^{(-1)^{|T|+1}}=\prod_{i=1}^n f_i^{\sum_{T\subset S}[gcd(T)=i](-1)^{|T|+1}}\]
上面那个指数看着就可以莫比乌斯反演一下之类的,然后令上面那一堆东西是\(a[i]\),然后令\(b[i]=\sum_{i|d}a[d]\)这个系数稍微推一下,得到:
\[b[i]=\sum_{i|d}a[d]=\sum_{T\subset S}[i|gcd(T)](-1)^{|T|+1}\]
这个值显然之和是否存在\(i\)倍数的数相关,存在就是\(1\),没有就是\(0\)
而莫比乌斯反演可以得到
\[a[i]=\sum_{i|d}\mu(\frac{d}{i})b[d]\]
再把这个东西带回去
\[\begin{aligned} g[n]&=\prod_{i=1}^n f_i^{a[i]}\\ &=\prod_{i=1}^n f_i^{\sum_{i|d}\mu(\frac{d}{i})b[d]}\\ &=\prod_{i=1}^n\prod_{i|d}f_i^{\mu(\frac{d}{i})b[d]} \end{aligned}\]
因为\(d\)的范围在\(n\)以内,所以必定存在\(d\)的倍数,所以\(b[d]=1\),那么只需要提前一个\(log\)预处理后面一半就行了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1000100
inline int read()
{
    int x=0;bool t=false;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=true,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return t?-x:x;
}
int n,MOD;
bool zs[MAX];
int pri[MAX],mu[MAX],tot;
int f[MAX],g[MAX],s[MAX],inv[MAX];
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
void Sieve(int n)
{
    mu[1]=1;
    for(int i=2;i<=n;++i)
    {
        if(!zs[i])pri[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*pri[j]<=n;++j)
        {
            zs[i*pri[j]]=true;
            if(i%pri[j])mu[i*pri[j]]=-mu[i];
            else{mu[i*pri[j]]=0;break;}
        }
    }
}
int main()
{
    Sieve(MAX-1);
    int T=read();
    while(T--)
    {
        n=read();MOD=read();
        f[1]=1;for(int i=2;i<=n;++i)f[i]=(2ll*f[i-1]+f[i-2])%MOD;
        for(int i=1;i<=n;++i)s[i]=1,inv[i]=fpow(f[i],MOD-2);
        for(int i=1;i<=n;++i)
            for(int j=i;j<=n;j+=i)
                if(mu[j/i]==1)s[j]=1ll*s[j]*f[i]%MOD;
                else if(mu[j/i]==-1)s[j]=1ll*s[j]*inv[i]%MOD;
        g[0]=1;for(int i=1;i<=n;++i)g[i]=1ll*g[i-1]*s[i]%MOD;
        int ans=0;for(int i=1;i<=n;++i)ans=(ans+1ll*g[i]*i)%MOD;
        printf("%d\n",ans);
    }
}

转载于:https://www.cnblogs.com/cjyyb/p/10923643.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值