BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数(min-max容斥)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_35649707/article/details/81170007

传送门

题解:
fn=2fn1+fn2
有一个结论是形如fn=afn1+bfn2,有gcd{fx,fy}=fgcd{x,y}

利用minmax容斥,有:

lcmfT=STfgcd{S}(1)|S|+1

d|ngd=fn
那么
lcmf{T}=STfgcd{S}(1)|S|+1=ST(d|gcd{S}gd)(1)|S|+1=dgdST,d|gcd{S}(1)|S|+1

发现gd对大等于d的项都会产生贡献,我们反演之后扫一遍即可。

#include <bits/stdc++.h>
using namespace std;

const int RLEN=1<<18|1;
inline char nc() {
    static char ibuf[RLEN],*ib,*ob;
    (ib==ob) && (ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
    return (ib==ob) ? -1 : *ib++;
}
inline int rd() {
    char ch=nc(); int i=0,f=1;
    while(!isdigit(ch)) {if(ch=='-')f=-1; ch=nc();}
    while(isdigit(ch)) {i=(i<<1)+(i<<3)+ch-'0'; ch=nc(); }
    return i*f;
}
inline void W(int x) {
    static int buf[50];
    if(!x) {putchar('0'); return;}
    if(x<0) {putchar('-'); x=-x;}
    while(x) {buf[++buf[0]]=x%10; x/=10;}
    while(buf[0]) {putchar(buf[buf[0]--]+'0');}
}

const int N=1e6+50; int mod;
inline int add(int x,int y) {return (x+y>=mod) ? (x+y-mod) : (x+y);}
inline int dec(int x,int y) {return (x-y<0) ? (x-y+mod) : (x-y);}
inline int mul(int x,int y) {return (long long)x*y%mod;}
inline int power(int a,int b,int rs=1) {for(;b;b>>=1,a=mul(a,a)) if(b&1) rs=mul(rs,a); return rs;}

int n,f[N],g[N]; 
inline void solve() {
    n=rd(), mod=rd();
    f[1]=1; f[2]=2; 
    for(int i=1;i<=n;i++) g[i]=1;
    for(int i=3;i<=n;i++) f[i]=add(mul(2,f[i-1]),f[i-2]);
    for(int i=1;i<=n;i++) {
        g[i]=mul(f[i],power(g[i],mod-2));
        for(int j=i+i;j<=n;j+=i) g[j]=mul(g[j],g[i]);
    } 
    int ans=0;
    for(int i=1;i<=n;i++) {
        ans=add(ans,mul(g[i],i));
        g[i+1]=mul(g[i+1],g[i]);
    } W(ans), putchar('\n');
}
int main() {
    for(int T=rd();T;T--) solve();
} 

没有更多推荐了,返回首页