4833: [Lydsy2017年4月月赛]最小公倍佩尔数

4833: [Lydsy2017年4月月赛]最小公倍佩尔数

Time Limit: 8 Sec Memory Limit: 128 MB
Submit: 119 Solved: 55
[Submit][Status][Discuss]
Description

令(1+sqrt(2))^n=e(n)+f(n)*sqrt(2),其中e(n),f(n)都是整数,显然有(1-sqrt(2))^n=e(n)-f(n)*sqrt(2)。令g(

n)表示f(1),f(2)…f(n)的最小公倍数,给定两个正整数n和p,其中p是质数,并且保证f(1),f(2)…f(n)在模p意义
下均不为0,请计算sigma(i*g(i)),1<=i<=n.其在模p的值。
Input

第一行包含一个正整数 T ,表示有 T 组数据,满足 T≤210 。接下来是测试数据。每组测试数据只占一行,包含
两个正整数 n 和 p ,满足 1≤n≤10^6,2≤p≤10^9+7 。保证所有测试数据的 n 之和不超过 3×10^6 。
Output

对于每组测试数据,输出一行一个非负整数,表示这组数据的答案。

Sample Input

5

1 233

2 233

3 233

4 233

5 233
Sample Output

1

5

35

42

121
HINT

Source

鸣谢Tangjz提供试题

[Submit][Status][Discuss]

这感觉是道非常非常难的数学题。。。
以下为了方便,记 (a,b)=gcd(a,b)[a,b]=lcm(a,b)
好像数学上也是这样表示的?
不管怎么样先打个表,
发现 f(1)=1,f(2)=2,f(n)=2f(n1)+f(n2)
既然 f 函数这么有规律,那么g呢。。。。好吧死活没有
于是就去翻译题解了。。。。。。题解真难!
先是把递推式的转移矩阵列出来,然后手算几项
发现有规律 f(n+m)=f(n1)f(m)+f(n)f(m+1)
然后大力数学归纳一下。。。发现是能证明的。。
于是 (f(n+m),f(n))=(f(n1)f(m),f(n))
由打出来的表不难发现, f(n1) f(n) 是互质的
所以 (f(n1)f(m),f(n))=(f(m),f(n))
显然把互质部分的因子去掉等式仍然成立
考虑辗转相除法的过程,可以证明 (f(n),f(m))=f((n,m))
考虑任意两个位置 a,b [f(a),f(b)]=f(a)f(b)(f(a),f(b))=f(a)f(b)f((a,b))
考虑这个式子 ([a1,a2,,an],b)
可以只关心每类素因子对答案的贡献
于是原式可化为 [(a1,b),(a2,b),,(an,b)]
考虑任意三个位置 i,j,k
[f(i),f(j),f(k)]=[f(i),f(j)]f(k)([f(i),f(j)],f(k))=f(i)f(j)f((i,j))f(k)[f((i,k)),f((j,k))]
下面那个 lcm 暴力展开就得到 f(i)f(j)f(k)f((i,j,k))f((i,j))f((i,k))f((k,j))
于是乎大胆猜结论???(一辈子猜不出来系列)


上面是小清新与现实的分割线
Sn={1,2,,n}
g(n)=TSf(gcdiT(i))(1)|T|+1
这东西。。。听说可以归纳(这个部分苟蒻亲身写了式子。。然后吐了)
那就假装是可以用归纳法证明的吧!(皆大欢喜:D)
再定义 f(n)=d|nh(d)
于是原式又化为 TSd|gcdiT(i)h(d)(1)|T|+1
这个式子。。。题解化到结果的操作姿势太玄学。。完全看不懂
结果竟是 g(n)=ni=1h(i)
h(n)=d|nf(d)u(nd)
这个用类似证明莫比乌斯反演的证明方式证明
反正剩下就是大力调和级数筛筛筛。。。
复杂度 O(nlogn)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

const int maxn = 1E6 + 5;

int n,p,T,tot,f[maxn],g[maxn],h[maxn],mu[maxn],pri[maxn];
bool not_pri[maxn];

#define Mul(a,b) (1LL * (a) * (b) % p)
#define Add(a,b) ((a) + (b) < p ? (a) + (b) : (a) + (b) - p)

inline int ksm(int x)
{
    int ret = 1;
    for (int y = p - 2; y; y >>= 1)
    {
        if (y & 1) ret = Mul(ret,x);
        x = Mul(x,x);
    }
    return ret;
}

void Solve()
{
    scanf("%d%d",&n,&p);
    f[1] = h[1] = g[1] = 1;
    for (int i = 2; i <= n; i++)
    {
        f[i] = Add(Mul(2,f[i - 1]),f[i - 2]);
        g[i] = ksm(f[i]); h[i] = 1;
    }
    for (int i = 1; i <= n; i++)
    {
        if (mu[i] == 1)
        {
            for (int j = i,now = 1; j <= n; j += i,now++)
                h[j] = Mul(h[j],f[now]);
        }
        else if (mu[i] == -1)
        {
            for (int j = i,now = 1; j <= n; j += i,now++)
                h[j] = Mul(h[j],g[now]);
        }
    }
    int Ans = 0,tmp = 1;
    for (int i = 1; i <= n; i++)
    {
        tmp = Mul(tmp,h[i]);
        Ans = Add(Ans,Mul(i,tmp));
    }
    cout << Add(Ans,p) << endl;
}

int main()
{
    #ifdef DMC
        freopen("DMC.txt","r",stdin);
    #endif

    mu[1] = 1;
    for (int i = 2; i < maxn; i++)
    {
        if (!not_pri[i])
            pri[++tot] = i,mu[i] = -1;
        for (int j = 1; j <= tot; j++)
        {
            int Nex = i * pri[j];
            if (Nex >= maxn) break;
            not_pri[Nex] = 1;
            if (i % pri[j] == 0)
            {
                mu[Nex] = 0; break;
            }
            mu[Nex] = -mu[i];
        }
    }
    cin >> T; while (T--) Solve();
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值