java动态规划 硬币_动态规划-硬币问题

本文介绍了使用Java动态规划算法解决硬币凑数问题,通过递归关系和最小硬币数量的选择,给出具体实现代码并展示运行结果。
摘要由CSDN通过智能技术生成

算法思想:动态规划

实际问题:硬币问题

编写语言:Java

问题描述

假设有 1 元,3 元,5 元的硬币若干(无限),现在需要凑出 n 元。问如何组合才能使硬币的数量最少?

关键特征

要推出问题的关键特征与递归关系,必要的例子是少不了的。

我们先假设一个函数 d(i) 来表示需要凑出 i 的总价值需要的最少硬币数量,那么:

当 i = 0 时,很显然我们可以知道 d(0) = 0。因为不要凑钱了嘛,当然也不需要任何硬币了。注意这是很重要的一步,其后所有的结果都从这一步延伸开来。

当 i = 1 时,因为我们有 1 元的硬币,所以直接在第 1 步的基础上,加上 1 个 1 元硬币,得出 d(1) = 1。

当 i = 2 时,因为我们并没有 2 元的硬币,所以只能拿 1 元的硬币来凑。在第 2 步的基础上,加上 1 个 1 元硬币,得出 d(2) = 2。

当 i = 3 时,我们可以在第 3 步的基础上加上 1 个 1 元硬币,得到 3 这个结果。但其实我们有 3 元硬币,所以这一步的最优结果不是建立在第 3 步的结果上得来的,而是应该建立在第 1 步上,加上 1 个 3 元硬币,得到 d(3) = 1。

接着就不再举例了,推导过程和上面一样。

递归结构

我们来分析一下上述过程。可以看出,除了第 1 步这个看似基本的公理外,其他往后的结果都是建立在它之前得到的某一步的最优解上,加上 1 个硬币得到。即:d(i) = d(j) + 1,此处 j < i,但是在上述例子中我们发现 i = 3 时,有两个解,但我们选择了第二个解,即:d(i) = min(d(j) + 1)

有了结构,思路就清晰了,代码写起来也就很方便了。

Java代码

//以下例子中 n 的数值取 11

public class CoinProblem

{

public static void main(String[] args)

{

int[] coins = new int[]{1, 3, 5}; //硬币的面值

int money = 11; //待求取的目标数额

int[] result = getLeastCoins(coins, money);

System.out.print("硬币的面值为:");

for(int i = 0; i < coins.length; i++)

{

System.out.print(coins[i] + " ");

}

System.out.println();

for(int i = 0; i < result.length; i++)

{

System.out.println("要凑齐数额 " + i + " 最少需要 "

+ result[i] + " 个硬币");

}

}

/**

* param coins 存储硬币面值的数组

* param money 待求取的目标数额

* return result 存储各个数额所需最少硬币的数组

*/

public static int[] getLeastCoins(int[] coins, int money)

{

int[] result = new int[money + 1];

result[0] = 0; //数额0只需0个便可凑齐

for(int i = 1; i < result.length; i++)

result[i] = 10000; //初始化时各个数额需要最大上限个硬币

for(int i = 1; i <= money; i++)

{

for(int coin : coins)

{

if(coin <= i)

{

int min = 10000; //存储中间结果的变量,初始化为最大硬币上限

min = result[i - coin] + 1;

if(result[i] > min)

result[i] = min;

}

}

}

return result;

}

}

运行结果

b286328ceaeaa60183a0b724faf9a13d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值