来自FallDream的博客,未经允许,请勿转载,谢谢,
经历了一段艰辛的旅程后,主人公小P乘坐飞艇返回。在返回的途中,小P发现在漫无边际的沙漠中,有一块狭长的绿地特别显眼。往下仔细一看,才发现这是一个游乐场,专为旅途中疲惫的人设计。娱乐场可以看成是一块大小为n×m的区域,且这个n×m的区域被分成n×m个小格子,每个小格子中就有一个娱乐项目。然而,小P并不喜欢其中的所有娱乐项目,于是,他给每个项目一个满意度。满意度为正时表示小P喜欢这个项目,值越大表示越喜欢。为负时表示他不喜欢,这个负数的绝对值越大表示他越不喜欢。为0时表示他对这个项目没有喜恶。小P决定将飞艇停在某个小格中,然后每步他可以移动到相邻的上下左右四个格子的某个格子中。小P希望找一条路径,从飞艇所在格出发,最后又回到这个格子。小P有一个习惯,从不喜欢浪费时间。因此,他希望经过每个格子都是有意义的:他到一个地方后,就一定要感受以下那里的惊险和刺激,不管自己是不是喜欢那里的娱乐项目。而且,除了飞艇所在格,其他的格子他不愿意经过两次。小P希望自己至少要经过四个格子。在满足这些条件的情况下,小P希望自己玩过的娱乐项目的满意度之和最高。你能帮他找到这个最高的满意度之和吗?
n<=100 m<=6
很显然是插头dp
因为不要求全部走完,所以和回路有点区别。
如果两个插头是(),且其他都没有插头,可以直接更新答案。
如果两个插头都没有,那么可以不选择这一格进行转移。
可以预处理状态,最多127种,复杂度127nm
#include<iostream> #include<cstdio> #include<cstring> #define INF 1000000000 using namespace std; inline int read() { int x = 0 , f = 1; char ch = getchar(); while(ch < '0' || ch > '9'){ if(ch == '-') f = -1; ch = getchar();} while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();} return x * f; } int s[130],q[10],n,m,top=0,ans=-INF,tot=0,a[105][7],c[130][7],f[7][1<<14]; inline void R(int&x,int y){y>x?x=y:0;} int main() { n=read();m=read(); for(int i=1;i<=n;++i) for(int j=1;j<=m;++j) a[i][j]=read(); for(int i=0;i<1<<(m<<1)+2;++i) { s[++tot]=i;top=0; for(int j=0;j<=m;++j) { int x=i>>(j<<1); if((x&3)==3) {top=-1;break;} if((x&3)==1) q[++top]=j; if((x&3)==2) { if(!top) {top=-1;break;} c[tot][j]=q[top];c[tot][q[top]]=j; --top; } } if(top) --tot; } for(int i=0;i<7;++i) for(int j=0;j<1<<14;++j) f[i][j]=-INF; f[m][0]=0; for(int i=1;i<=n;++i) { for(int j=1;j<=tot;++j) { if(s[j]&3) f[0][s[j]]=-INF; else f[0][s[j]]=f[m][s[j]>>2]; } for(int j=1;j<=m;++j) { int x=(j-1)<<1; for(int k=1;k<=tot;++k) f[j][s[k]]=-INF; for(int k=1;k<=tot;++k) { int p=(s[k]>>x)&3,q=(s[k]>>(x+2))&3; if(!p&&!q) { R(f[j][s[k]],f[j-1][s[k]]); R(f[j][s[k]^(9<<x)],f[j-1][s[k]]+a[i][j]); } else if(p&&q) { if(p==1&&q==1) R(f[j][s[k]^(5<<x)^(3<<(c[k][j]<<1))],f[j-1][s[k]]+a[i][j]); if(p==1&&q==2) if(s[k]==(9<<x)) R(ans,f[j-1][s[k]]+a[i][j]); if(p==2&&q==1) R(f[j][s[k]^(6<<x)],f[j-1][s[k]]+a[i][j]); if(p==2&&q==2) R(f[j][s[k]^(10<<x)^(3<<(c[k][j-1]<<1))],f[j-1][s[k]]+a[i][j]); } else { R(f[j][s[k]],f[j-1][s[k]]+a[i][j]); R(f[j][s[k]^(p<<x)^(q<<x+2)|(p<<x+2)|(q<<x)],f[j-1][s[k]]+a[i][j]); } } } } cout<<ans; return 0; }