应用运筹学基础:线性规划 (1) - 极点与基可行解

学校有一门课叫《应用运筹学基础》,是计算机学院唯一教优化的课程,感觉上得还行,这里简单记录一下上课学到的知识。第一节课是线性规划(linear programming)。

 

凸集

对于集合 $S$,若任意两元素 $x, y \in S$,且对于任意 $0 \le \theta \le 1$ 有 $\theta x + (1-\theta)y \in S$,那么 $S$ 是凸集(convex set,形象地想象就是凸的图形)。

可以推广:若 $S$ 为凸集,那么对任意 $n \ge 2$ 个元素 $x_1, x_2, \dots, x_n \in S$ 以及任意 $\sum_{i=1}^n \theta_i = 1$,都有 $\sum_{i=1}^n \theta_ix_i \in S$。

可以使用归纳法证明:

(1) 对于 $n = 2$,根据凸集的定义,结论成立。

(2) 若对于 $n = k$ 结论成立,即对任意 $x_1, x_2, \dots, x_k \in S$ 以及任意 $\sum_{i=1}^k \theta_i = 1$,有 $\sum_{i=1}^k \theta_ix_i \in S$。那么对于任意 $y_1, y_2, \dots, y_{k+1} \in S$ 以及任意 $\sum_{i=1}^{k+1} \lambda_i = 1$,有 $\sum_{i=1}^k \lambda_i = 1 - \lambda_{k+1}$,即 $\sum_{i=1}^k \lambda_i / (1 - \lambda_{k+1}) = 1$,那么 $t_{k+1} = \sum_{i=1}^k \lambda_iy_i / (1 - \lambda_{k+1}) \in S$,根据凸集的定义,自然有 $\sum_{i=1}^{k+1} \lambda_iy_i = (1 - \lambda_{k+1})t_{k+1} + \lambda_{k+1}y_{k+1} \in S$,结论成立。

凸集的交仍然是凸集,容易通过定义证明。

 

凸函数

对于定义在凸集 $S$ 上的函数 $f(x)$,若对于任意 $0 \le \theta \le 1$ 有 $f(\theta x + (1-\theta) y) \l

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值