Introduction to Linear Optimization 2.2 极点,顶角与基可行解

1.极点

极点的定义及理解

Definition 2.6 Let P be a polyhedron. A vector x ∈ P is an extreme point of P if we cannot find two vectors y, z ∈ P, both different from x, and a scalar λ ∈ [0,1], such that x = λy + (1 - λ)z.

定义中给出了一种严格证明极点 (extreme point) 的方法,即:极点无法被另外两个点的线性组合表示出。若我们想用概括性的图像思维来描述极点的话,请先看下图(所有的极点都已用字母标出)
在这里插入图片描述通过观察不难发现,所有的极点都是凸集的“角(corner)”,即:你无法找到相异的两点,使得这些“角”在这两点的连线上。这就是我对于极点的直观几何理解。
当然,这是在二维平面上的,这里希望读者自己去思考在3,4,…,n维情况下,极点究竟如何定义。


2.顶角

顶角的定义

Definition 2.7 Let P be a polyhedron, A vector x ∈ P is a vertex of P if there exists some c such that c’x < c’y for all y satisfying y ∈ P and yx.

即在多面体内存在某点 x,存在一个与 x 维数相同的向量 c,二者内积为该多面体内所有元素与 c 的内积的最小值。这样的点,我们称之为顶角(vertex)。

声明:关于“顶角(vertex)”的翻译,引用于“规范场论中的非微扰方法和置换群方法研究1”,若有更好的翻译,欢迎前来指正!

顶角的理解

我们不妨仍以这张图为例:
在这里插入图片描述通过顶角的定义我们不难看出,顶角一般只有一个(这里先不讨论无穷多的情况)。假设我们选取 c’ = (1,1),不难发现,O点即为顶角(0×1 + 0×1 = 0),除了O点之外,无法再找出任何一个点与 c’ 的内积小于0。

但是我们的 c’ 如果变为 (-1,-2) ,会发生什么情况呢?

显然,该凸集的顶角变为了B点

通常情况下,这里所描述的顶角就代表着线性规划中的最优解,但是线性规划的解又存在唯一最优解与无穷多最优解的情况,因此在实际情况中,也会存在多个顶角的情况。

严格约束

Definition 2.8 If a vector x* satisfies a*ix* = bi for some i = 1,2,3…,k, we say that the corresponding constraint is active or binding at x*.

在定义2.8中,描述了严格约束的情况。由于线性规划是由等式约束与不等式约束所构成的,若存在某可行解,则该解必然满足等式约束,此时称此等式约束为严格约束。同理,当某可行解满足不等式约束的同时,使该不等式变为了等式约束(例:约束x1 + 2x2 ≤ 5,当有解满足 x1 + 2x2 = 5时,我们称在该解的情况下,该不等式为严格约束),我们就称该不等式为严格约束。


基可行解

严格约束与基可行解的关系

我们在本节前半部分使用了极点,顶角等几何手段来描述凸集的几何构造,然后又引入了严格约束,现将二者联系起来,从几何与代数两个角度来描述基解,基可行解等概念

Definition 2.9 Consider a polyhedron P defined by linear equality and inequality constraints, and let x* be an element of Rn.
(a) The vector x* is a basic solution if:

  • All equality constraints are active;
  • Out of the constraints that are active at x*, there are n of them that are linearly independent.

(b) If x* is a basic solution that satisfies all of the constraints, we say that it is a basic feasible solution.

在定义2.9(a)的情况下,当n维向量x满足所有等式约束且满足n个线性独立的约束时,x被称为基解。当基解满足所有约束时,基解变为基可行解。

如何理解这个定义呢?不妨来看下面这张图:
在这里插入图片描述
本图灰色部分代表可行域,各个字母所代表的点为基解,但是只有在可行域内的基解才为基可行解。

我们以A点为例,其在维数 n = 2 的情况下满足了两个严格约束(x ≥ 0与直线AC所代表的约束),且这两个约束是线性独立的,因此根据定义2.9,我们不难得知A点代表了一个基解,但是由于其不满足其它不等式约束(不在可行域内部)因此A并非一个基可行解。

注:在n维情况下,若某线性规划问题只存在m个约束条件(m < n)那么即使所有的约束都成为严格约束,严格约束的数量(m)也小于空间的维数(n),此时该线性规划问题不存在基解或是基可行解。

经过上述的思考,不难得出以下定理:
Theorem 2.3 Let P be a nonempty polyhedron and let x* ∈ P. Then, the fellowing are equivalent:

  • x* is a vertex;
  • x* is an extreme point;
  • x* is a bisic feasible solution.

注:上述三个条件互相等价,可以互相代换。

邻接基解

对于同一个线性规划问题,若存在两个不同的基解,且这两个基解所满足的严格不等式恰有n - 1个相同,则称这两个基解是邻接的。

废话不多说,直接上图理解:
在这里插入图片描述
还是这张图,A,D,O三个基解互为邻接基解,因为在n = 2的情况下,只要满足1个(1 = n -1)相同的严格约束即为邻接基解,即该图中所有在同一条直线上的基解互为邻接基解,但如B,O两基解就不为邻接基解,因为两个基解不满足任何相同的严格约束。


小节

本节仍是介绍线性规划的基础知识,为后续更好的理解单纯形法等内容做铺垫,扎实的理解每一节的内容固然会让后面的学习更加轻松,但是罗马不是一天建成的,扎实的基本功需要反复的操练,线性规划前期的基础内容看不懂也要反复的理解。极点,顶角,基解及基可行解等这些概念通过联系图之后并没有特别大的难度。我也会尽力保证更新的速度,共勉!


参考文献

[1] Dimitris Bertsimas,John N. Tsitsiklis . Introduction to Linear Optimization[M]. 1997: 46-53
[2] 艾德臻. 规范场论中的非微扰方法和置换群方法研究[D]. 西北师范大学, 2007.

版权归原作者所有,未经原作者允许不得将本文内容用于任何商业或盈利目的,否则将视为侵权,转载或者引用本文内容请注明来源及原作者,对于不遵守此声明或者其他违法使用本文内容者,本人依法保留追究权等。

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值