二次剩余

二次剩余

如果方程 \(x^2\equiv n\pmod p\) 有解,那么称 \(n\) 在模 \(p\) 意义下是二次剩余。只考虑 \(p\) 为奇素数的情况。

二次剩余判定-欧拉准则

首先定义 勒让德符号

\[ \left(\frac n p\right) = \left\{ \begin{array}{ll} 1 & \text{$n$在模$p$意义下是二次剩余} \\ -1 & \text{$n$在模$p$意义下不是二次剩余} \\ 0 & \text{$n\equiv 0\pmod p$} \end{array}\right. \]

欧拉准则 \(\left(\frac n p\right) \equiv n^{\frac {p-1} 2} \pmod p\)

证明

  • 如果 \(n\equiv 0\pmod p\),那么结果显然
  • 否则,根据费马小定理 \(n^{p-1}\equiv 1\pmod p\)
    \[ n^{p-1}-1\equiv (n^{\frac {p-1} 2}+1)(n^{\frac {p-1} 2}-1)\equiv 0\pmod p\]
    • 如果 \(n^{\frac {p-1} 2}\equiv 1\pmod p\)\(n\) 在模 \(p\) 意义下是二次剩余
    • 如果 \(n^{\frac {p-1} 2}\equiv x^{p-1}\equiv -1\),根据费马小定理,不存在 \(x\),此时\(n\) 在模 \(p\) 意义下不是二次剩余

二次剩余求解-Cipolla算法

首先要说,这个算法整个是一个神奇的构造,脑洞巨大。

对于 \(k\) 不存在二次剩余,可以定义 \(\omega=\sqrt k\)。并且定义一个新数域 \(\mathbb{F}_{p^2}\) ,数的形式为 \(a+b\omega\)。这是一个合法的域,详见维基

在这个域中有一个特殊性质 \(\omega^p\equiv -\omega\pmod p\)

  • 证明
    \[ \omega^p\equiv \omega\cdot\omega^{p-1}\equiv \omega\cdot k^{\frac {p-1} 2}\equiv -\omega\pmod p \]

再来证明一个定理 \((a+b)^n\equiv a^n+b^n\pmod n\ \textrm{n is prime}\)

  • 证明
    \[ \begin{align} (a+b)^n=\sum_{i=0}^n{a^n\cdot b^{n-1}\cdot{n\choose i}} \end{align} \]
    \(i\neq 1\)\(n\)\({n\choose i}=\frac {n!} {i!(n-i)!}\) 中分子上的 \(n\) 不能消掉,所以为 \(0\)
    \(i=1\)\(n\),值分别为 \(a^n\)\(b^n\)

在这个算法中,首先找到一个数 \(a\),满足 \(a^2-n\) 是非二次剩余,那么令上面讨论的 \(k=a^2-n, \omega=\sqrt{a^2-n}\)

要求的答案 \(x\equiv (a+\omega)^{\frac {p+1} 2} \pmod p\)

  • 证明
    \[ \begin{eqnarray} x & \equiv & (a+\omega)^{p+1} \\ & \equiv & (a+\omega)^p(a+\omega) \\ & \equiv & (a^p+\omega^p)(a+\omega) \\ & \equiv & (a-\omega)(a+\omega) \\ & \equiv & a^2-\omega^2 \\ & \equiv & a^2-(a^2-n) \\ & \equiv & n\pmod p \end{eqnarray} \]

求得 \(x\) 的相反数也是一个解。

最好要解决的一个问题:求得的解是在\(\mathbb{F}_{p^2}\)下,那么在\(\mathbb{F}_{p}\)下是否成立呢,即解的 \(\omega\) 的系数是否为 \(0\) ?

  • 根据拉格朗日定理,\(x^2\equiv n\pmod p\) 最多有两个解,由于 \(\mathbb{F}_{p^2}\) 是从 \(\mathbb{F}_{p}\) 扩张来的,所以这两个解在 \(\mathbb{F}_{p^2}\) 一定成立。
    \(\mathbb{F}_{p^2}\) 下只有两个解,所以这两个解就是在 \(\mathbb{F}_{p}\) 的解。

关于 \(a\) 的求法,随机几个数就好了,因为满足为 \(p\) 的二次剩余的数的个数为 \(\frac {p-1} 2\)

  • 证明
    考虑所以 \(x^2\)。如果存在两个不同的数 \(u, v\) ,满足 \(u^2\equiv v^2\) ,所以 \(p\mid u^2-v^2\),即 \(p\mid (u-v)(u+v)\) ,因为 \(p\not\mid u-v\) ,可得 \(p\mid u+v\) ,即 \(u+v=p\)。所以共有 \(\frac {p-1} 2\) 个不同的平方,同时可得一个 \(n\) 对应了两个互为相反数的解。

二次互反律

\(p\)\(q\) 为不同的两个奇素数,则\(\left(\frac p q\right)\left(\frac q p\right)=(-1)^{\frac {p-1} 2 \frac {q-1} 2}\)

转载于:https://www.cnblogs.com/mistyeye/p/6810000.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值