数论基础:模奇素数的二次剩余 (2)

TODO:

解读 Adleman-Manders-Miller square root extraction method
python实现求解模奇素数的二次同余方程
Cipolla-Lehmer and Tonelli-Shanks algorithms 学习
 
 

x 2 ≡ a   ( m o d   p ) 的 解 法 x^2 \equiv a\ (mod\ p)的解法 x2a (mod p)

我们假定 a ∈ Q R ( p ) a \in Q_{R}(p) aQR(p),即上面的方程有解
 

1. p ≡ 3   ( m o d   4 ) 的 情 形 p \equiv 3\ (mod\ 4)的情形 p3 (mod 4)

在这里插入图片描述
实现思路:随机选取 a a a,计算Legendre符号。若Legendre符号等于 1 1 1,那么 a p + 1 4 ( m o d   p ) a^{\frac{p+1}{4}}(mod\ p) a4p+1(mod p) 就是方程的一个解。
 

2. p ≡ 5   ( m o d   8 ) 的 情 形 p \equiv 5\ (mod\ 8)的情形 p5 (mod 8)

在这里插入图片描述
实现思路:随机选取 a a a,计算Legendre符号。若Legendre符号等于 1 1 1,再按照上图的逻辑来做。
 

3. 其 他 情 形 其他情形

基本上没有向上面一样的简单方法。
只有使用一些数学原理相对复杂的算法:
Tonelli-Shanks algorithm
Cipolla-Lehmer algorithm(似乎是引入了复数,对域进行扩张,想学)
Adleman-Manders-Miller square root extraction

如果看懂了这篇文章的内容,AMM算法的原理是不难理解的。因为手法是相似的。
 

参考资料


上一篇数论基础:模奇素数的二次剩余 (1)

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值