HDU 3887 Counting Offspring (DFS序+树状数组)

<题目链接>

题目大意:

给定一个$n$个节点的无向树,并且给出这棵树的根,然后问你,对于每个节点,输出该节点的子树中节点序号小于它的节点个数。

解题分析:
用DFS序将整棵树拍平,然后用树状数组维护一下这个DFS序,$in[x]$到$out[x]$之间的节点表示的就是以这个点为根的子树中的节点。按照序号从小到大遍历,然后每次遍历,先询问$(in[x],out[x])$之间已经被点亮的点的个数,询问后将自己点亮即可。

#include <bits/stdc++.h>
using namespace std;

template<typename T>
inline void read(T&x){
    x=0;int f=1;char c=getchar();
    while(c<'0'||c>'9'){ if(c=='-')f=-1;c=getchar(); }
    while(c>='0' && c<='9'){ x=x*10+c-'0'; c=getchar(); }
    x*=f;
}
#define REP(i,s,t) for(int i=s;i<=t;i++)
#define clr(a,b) memset(a,b,sizeof(a))
const int N = 1e5+5;

struct Edge{ int to,nxt; }e[N<<1];
int n,m,cnt,cur,tot;
int head[N],tr[N<<1],in[N],out[N];

inline void init(){
    cnt=tot=0;
    clr(head,-1);clr(tr,0);
    cur=n<<1;
}
inline void add(int u,int v){
    e[++cnt]=(Edge){ v,head[u] };head[u]=cnt;
}
void dfs(int u,int pre){        //求出DFS序 
    in[u]=++tot;
    for(int i=head[u];~i;i=e[i].nxt){
        int v=e[i].to;
        if(v==pre)continue;
        dfs(v,u);
    }
    out[u]=++tot;
}
inline int lowbit(int x){ return x&(-x); }

inline void update(int i){
    while(i<=cur){
        tr[i]+=1;
        i+=lowbit(i);
    }
}
inline int sum(int i){
    int ans=0;
    while(i>=1){
        ans+=tr[i];
        i-=lowbit(i);
    }
    return ans;
}
int main(){
    while(~scanf("%d%d",&n,&m),n||m){
        init();
        REP(i,1,n-1){
            int u,v;read(u);read(v);
            add(u,v);add(v,u);
        }
        dfs(m,-1);
        REP(i,1,n){
            int now=sum(out[i]-1)-sum(in[i]);    //因为要严格小于
            i==n?printf("%d\n",now):printf("%d ",now);
            update(in[i]);
        }
    }
}

 

转载于:https://www.cnblogs.com/00isok/p/10892389.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值