利用sklearn计算决定系数R2

决定系数R2是衡量回归模型性能的指标,sklearn.metrics的r2_score函数提供了计算方式。R2最佳分数为1.0,最差可能为负值。注意,R2得分是不对称的,并且可以是负数,表示模型可能比简单预测y期望值更差。
摘要由CSDN通过智能技术生成

决定系数R2

 

sklearn.metrics中r2_score

格式

sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)

R^2 (coefficient of determination) regression score function.

R2可以是负值(因为模型可以任意差)。如果一个常数模型总是预测y的期望值,而忽略输入特性,则r^2的分数将为0.0。

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值