利用sklearn计算决定系数R2

决定系数R2是衡量回归模型性能的指标,sklearn.metrics的r2_score函数提供了计算方式。R2最佳分数为1.0,最差可能为负值。注意,R2得分是不对称的,并且可以是负数,表示模型可能比简单预测y期望值更差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决定系数R2

 

sklearn.metrics中r2_score

格式

sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)

R^2 (coefficient of determination) regression score function.

R2可以是负值(因为模型可以任意差)。如果一个常数模型总是预测y的期望值,而忽略输入特性,则r^2的分数将为0.0。

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters:
### 关于二元线性回归中的决定系数 \( R^2 \) #### 决定系数 \( R^2 \) 的概念 \( R^2 \),又称作决定系数,用于评估模型解释因变量变异的能力。具体来说,它表示由自变量所解释的因变量变异性占总变异性的比例[^3]。 对于二元线性回归而言,如果得到一个较高的 \( R^2 \) 值,则意味着该模型可以较好地通过两个独立变量来预测目标变量的变化情况。然而需要注意的是高 \( R^2 \) 并不一定代表模型具有良好的泛化能力,在某些情况下可能存在过拟合现象。 #### 计算方法 在简单线性回归中,\( R^2 \) 可以直接基于皮尔逊相关系数 \( r \) 来计算: \[ R^2 = r^2 \] 而在多元线性回归里(包括但不限于二元),则通常采用如下公式进行计算: \[ R^2 = 1 - \frac{\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}{\sum_{i=1}^{n}(y_i-\bar{y})^2} \] 其中, - \( y_i \) 表示第 i 个样本的真实值; - \( \hat{y}_i \) 是对应的预测值; - \( \bar{y} \) 则是指所有真实值的平均数。 上述表达式的分子部分实际上就是残差平方和 (RSS),分母则是总的离均差平方和(TSS)。 ```python import numpy as np from sklearn.linear_model import LinearRegression def calculate_r_squared(X, y_true): model = LinearRegression() model.fit(X, y_true) predictions = model.predict(X) ss_res = np.sum((y_true - predictions)**2) ss_tot = np.sum((y_true - np.mean(y_true))**2) r_squared = 1 - (ss_res / ss_tot) return r_squared ``` 此 Python 函数实现了给定输入矩阵 X 和标签向量 y 后自动求解 \( R^2 \) 的过程。 #### 应用场景 当构建了一个二元线性回归模型之后,可以通过查看其 \( R^2 \) 来初步判断这个模型的好坏以及是否值得进一步优化。例如,在经济研究领域内,可能会利用 GDP 对第二产业增加值建立这样的关系模型并考察相应的 \( R^2 \) ,以此作为衡量标准之一去验证两者间是否存在较强的相关性及其强度如何[^1]。 此外,尽管 \( R^2 \) 提供了一种直观的方式来看待模型性能,但在实际操作过程中还需要综合考虑其他因素如 AIC/BIC准则、交叉验证得分等来进行全面评价。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值