决定系数(R²分数)——评估回归模型性能的一个指标

目录

1.定义

2.计算举例

3. 结果分析


1.定义

R²(R平方)分数,也称为决定系数,是用来评估回归模型性能的一个指标。它表示自变量解释因变量变异性的比例。R²分数的取值范围通常在0到1之间,其值越接近1,说明模型拟合效果越好。

R²分数的计算公式如下:

$ R^2 = 1 - \frac{SS_{res}}{SS_{tot}} $

其中:

  • SS_{res}表示残差平方和(Residual Sum of Squares),即实际值与预测值之间的差异的平方和。
  •  SS_{tot}表示总平方和(Total Sum of Squares),即实际值与均值之间的差异的平方和。

 具体来说,SS_{res}和 SS_{tot} 的计算方式如下:

SS_{res} = \sum_{i=1}^{n}(y_i - \hat{y}_i)^2

SS_{tot} = \sum_{i=1}^{n}(y_i - \bar{y})^2

其中:

  •  y_i是第 i 个样本的实际值。
  •  \hat{y}_i是第 i 个样本的预测值。
  • \bar{y}是所有实际值的平均值。
  • n 是样本的数量。

2.计算举例

假设我们有一个简单的数据集,包含3个样本点:

样本实际值 (y)预测值 (\hat{y})
132.5
254.8
376.9

首先计算 SS_{res}和 SS_{tot}

1. 计算 \bar{y}:                 \bar{y} = \frac{3 + 5 + 7}{3} = 5

2.计算 SS_{res}: SS_{res} = (3 - 2.5)^2 + (5 - 4.8)^2 + (7 - 6.9)^2 = 0.25 + 0.04 + 0.01 = 0.3

3.计算 SS_{tot}:    SS_{tot} = (3 - 5)^2 + (5 - 5)^2 + (7 - 5)^2 = 4 + 0 + 4 = 8

4.最后计算 R^2:    R^2 = 1 - \frac{0.3}{8} = 1 - 0.0375 = 0.9625

因此,该模型的 R^2分数为 0.9625,表明模型对数据的拟合效果很好。

3. 结果分析

  • 当 R^2 接近1时,说明模型能够很好地解释数据的变化。
  • 当 R^2 接近0时,说明模型的预测能力较差。
  • 如果模型总是预测一个常数值(例如,所有样本的平均值),那么 R^2将为0。
  • 如果模型的预测值总是等于实际值,那么 R^2将为1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值