全网最详细的基于Ubuntu14.04/16.04 + Anaconda2 / Anaconda3 + Python2.7/3.4/3.5/3.6安装Tensorflow详细步骤(图文)(博主推荐)...

 

 

 

  不多说,直接上干货!

 

 

 

前言

  建议参照最新的tensorflow安装步骤(Linux,官方网站经常访问不是很稳定,所以给了一个github的地址):          https://github.com/tensorflow/tensorflow/blob/master/tensorflow/docs_src/install/install_linux.md

  最近,tensorflow网站上给出了新的使用Anaconda配置和安装Tensorflow的步骤,经过测试,在国内可以无障碍的访问。Anaconda 是一个基于python的科学计算包集合,目前支持Python 2.7,3.4,3.5,3.6。

 

  注意:在安装过程中如果出现很长的报错,观察错误信息的末尾,如果是网络链接相关,就重新运行一遍语句即可(如出现进度条不动的情况,也可重新运行语句),Anaconda自身约500M,tensorflow所需软件包约几十M。

  操作系统: Ubuntu 14.04   或  Ubuntu16.04

 

 

 

  这是Github官网给出的安装步骤

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/docs_src/install/install_linux.md

 

 

 

 

 

 

 

 

 

 

第一步、 安装Anaconda

  从anaconda官网(https://www.continuum.io/downloads)上下载linux版本的安装文件,运行完成安装。

  我这里是以Anaconda2-5.0.1-Linux-x86_64.sh为例,Anaconda3一样啦。这个很简单。

 

deeplearning@deeplearningsinglenode:~/SoftWare$ pwd
/home/deeplearning/SoftWare
deeplearning@deeplearningsinglenode:~/SoftWare$ ll
total 519916
drwxrwxr-x  4 deeplearning deeplearning      4096 12月  4 09:42 ./
drwxr-xr-x 17 deeplearning deeplearning      4096 12月  3 20:46 ../
-rwxrw-r--  1 deeplearning deeplearning 532375438 12月  4 09:42 Anaconda2-5.0.1-Linux-x86_64.sh*
drwxr-xr-x  8 deeplearning deeplearning      4096  8月  5  2015 jdk1.8.0_60/
drwxrwxr-x 11 deeplearning deeplearning      4096 12月  3 20:07 pycharm-2017.3/
deeplearning@deeplearningsinglenode:~/SoftWare$ bash ./Anaconda2-5.0.1-Linux-x86_64.sh 

Welcome to Anaconda2 5.0.1

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>> 
===================================
Anaconda End User License Agreement
===================================

Copyright 2015, Anaconda, Inc.

All rights reserved under the 3-clause BSD License:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditio
ns are met:

  * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer 
in the documentation and/or other materials provided with the distribution.
  * Neither the name of Continuum Analytics, Inc. (dba Anaconda, Inc.) ("Continuum") nor the names of its contributors may be used 
to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT N
OT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CON
TINUUM BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY TH
EORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


Notice of Third Party Software Licenses
=======================================

Anaconda contains open source software packages from third parties. These are available on an "as is" basis and subject to their in
dividual license agreements. These licenses are available in Anaconda or at https://docs.anaconda.com/anaconda/packages/pkg-docs . 
Any binary packages of these third party tools you obtain via Anaconda are subject to their individual licenses as well as the Anac
onda license. Continuum reserves the right to change which third party tools are provided in Anaconda.

In particular, Anaconda contains re-distributable, run-time, shared-library files from the Intel(TM) Math Kernel Library ("MKL bina
ries"). You are specifically authorized to use the MKL binaries with your installation of Anaconda. You are also authorized to redi
stribute the MKL binaries with Anaconda or in the conda package that contains them. Use and redistribution of the MKL binaries are 
subject to the licensing terms located at https://software.intel.com/en-us/license/intel-simplified-software-license. If needed, in
structions for removing the MKL binaries after installation of Anaconda are available at http://www.anaconda.com.

Anaconda also contains cuDNN software binaries from NVIDIA Corporation ("cuDNN binaries"). You are specifically authorized to use t
he cuDNN binaries with your installation of Anaconda. You are also authorized to redistribute the cuDNN binaries with an Anaconda p
ackage that contains them. If needed, instructions for removing the cuDNN binaries after installation of Anaconda are available at 
http://www.anaconda.com.


Cryptography Notice
===================

This distribution includes cryptographic software. The country in which you currently reside may have restrictions on the import, p
ossession, use, and/or re-export to another country, of encryption software. BEFORE using any encryption software, please check you
r country's laws, regulations and policies concerning the import, possession, or use, and re-export of encryption software, to see 
if this is permitted. See the Wassenaar Arrangement <http://www.wassenaar.org/> for more information.

Continuum has self-classified this software as Export Commodity Control Number (ECCN) 5D002.C.1, which includes information securit
y software using or performing cryptographic functions with asymmetric algorithms. The form and manner of this distribution makes i
t eligible for export under the License Exception ENC Technology Software Unrestricted (TSU) exception (see the BIS Export Administ
ration Regulations, Section 740.13) for both object code and source code. In addition, the Intel(TM) Math Kernel Library contained 
in Continuum's software is classified by Intel(TM) as ECCN 5D992b with no license required for export to non-embargoed countries.

The following packages are included in this distribution that relate to cryptography:

openssl
    The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade, full-featured, and Open Source toolkit imp
lementing the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols as well as a full-strength general purpose cr
yptography library.

pycrypto
    A collection of both secure hash functions (such as SHA256 and RIPEMD160), and various encryption algorithms (AES, DES, RSA, El
Gamal, etc.).

pyopenssl
    A thin Python wrapper around (a subset of) the OpenSSL library.

kerberos (krb5, non-Windows platforms)
    A network authentication protocol designed to provide strong authentication for client/server applications by using secret-key 
cryptography.

cryptography
    A Python library which exposes cryptographic recipes and primitives.

 

 

 

 

 

 

 

Please answer 'yes' or 'no':'
>>> yes

Anaconda2 will now be installed into this location:
/home/deeplearning/anaconda2

  - Press ENTER to confirm the location
  - Press CTRL-C to abort the installation
  - Or specify a different location below

[/home/deeplearning/anaconda2] >>> 
PREFIX=/home/deeplearning/anaconda2

 

 

 

 

 

 

 

installing: python-2.7.14-hc2b0042_21 ...
Python 2.7.14 :: Anaconda, Inc.
installing: ca-certificates-2017.08.26-h1d4fec5_0 ...
installing: conda-env-2.6.0-h36134e3_1 ...
installing: intel-openmp-2018.0.0-h15fc484_7 ...
installing: libgcc-ng-7.2.0-h7cc24e2_2 ...
installing: libgfortran-ng-7.2.0-h9f7466a_2 ...
installing: libstdcxx-ng-7.2.0-h7a57d05_2 ...
installing: bzip2-1.0.6-h0376d23_1 ...
installing: expat-2.2.4-hc00ebd1_1 ...
installing: gmp-6.1.2-hb3b607b_0 ...
installing: graphite2-1.3.10-hc526e54_0 ...
installing: icu-58.2-h211956c_0 ...
installing: jbig-2.1-hdba287a_0 ...
installing: jpeg-9b-habf39ab_1 ...
installing: libffi-3.2.1-h4deb6c0_3 ...
installing: libsodium-1.0.13-h31c71d8_2 ...
installing: libssh2-1.8.0-h8c220ad_2 ...
installing: libtool-2.4.6-hd50d1a6_0 ...
installing: libxcb-1.12-h84ff03f_3 ...
installing: lzo-2.10-h1bfc0ba_1 ...
installing: mkl-2018.0.0-hb491cac_4 ...
installing: ncurses-6.0-h06874d7_1 ...
installing: openssl-1.0.2l-h077ae2c_5 ...
installing: patchelf-0.9-hf79760b_2 ...
installing: pcre-8.41-hc71a17e_0 ...
installing: pixman-0.34.0-h83dc358_2 ...
installing: tk-8.6.7-h5979e9b_1 ...
installing: unixodbc-2.3.4-hc36303a_1 ...
installing: xz-5.2.3-h2bcbf08_1 ...
installing: yaml-0.1.7-h96e3832_1 ...
installing: zlib-1.2.11-hfbfcf68_1 ...
installing: curl-7.55.1-hcb0b314_2 ...
installing: glib-2.53.6-hc861d11_1 ...
installing: hdf5-1.10.1-hb0523eb_0 ...
installing: libedit-3.1-heed3624_0 ...
installing: libpng-1.6.32-hda9c8bc_2 ...
installing: libtiff-4.0.8-h90200ff_9 ...
installing: libxml2-2.9.4-h6b072ca_5 ...
installing: mpfr-3.1.5-h12ff648_1 ...
installing: pandoc-1.19.2.1-hea2e7c5_1 ...
installing: readline-7.0-hac23ff0_3 ...
installing: zeromq-4.2.2-hb0b69da_1 ...
installing: dbus-1.10.22-h3b5a359_0 ...
installing: freetype-2.8-h52ed37b_0 ...
installing: gstreamer-1.12.2-h4f93127_0 ...
installing: libxslt-1.1.29-hcf9102b_5 ...
installing: mpc-1.0.3-hf803216_4 ...
installing: sqlite-3.20.1-h6d8b0f3_1 ...
installing: fontconfig-2.12.4-h88586e7_1 ...
installing: gst-plugins-base-1.12.2-he3457e5_0 ...
installing: alabaster-0.7.10-py27he5a193a_0 ...
installing: asn1crypto-0.22.0-py27h94ebe91_1 ...
installing: backports-1.0-py27h63c9359_1 ...
installing: backports_abc-0.5-py27h7b3c97b_0 ...
installing: beautifulsoup4-4.6.0-py27h3f86ba9_1 ...
installing: bitarray-0.8.1-py27h304d4c6_0 ...
installing: boto-2.48.0-py27h9556ac2_1 ...
installing: cairo-1.14.10-haa5651f_5 ...
installing: cdecimal-2.3-py27h4e63abe_1 ...
installing: certifi-2017.7.27.1-py27h9ceb091_0 ...
installing: chardet-3.0.4-py27hfa10054_1 ...
installing: click-6.7-py27h4225b90_0 ...
installing: cloudpickle-0.4.0-py27ha64365b_0 ...
installing: colorama-0.3.9-py27h5cde069_0 ...
installing: configparser-3.5.0-py27h5117587_0 ...
installing: contextlib2-0.5.5-py27hbf4c468_0 ...
installing: dask-core-0.15.3-py27h53a7ee6_0 ...
installing: decorator-4.1.2-py27h1544723_0 ...
installing: docutils-0.14-py27hae222c1_0 ...
installing: enum34-1.1.6-py27h99a27e9_1 ...
installing: et_xmlfile-1.0.1-py27h75840f5_0 ...
installing: fastcache-1.0.2-py27h4cb8e01_0 ...
installing: filelock-2.0.12-py27h38fa839_0 ...
installing: funcsigs-1.0.2-py27h83f16ab_0 ...
installing: functools32-3.2.3.2-py27h4ead58f_1 ...
installing: futures-3.1.1-py27hdbc8cbb_0 ...
installing: glob2-0.5-py27hd3b7d1f_1 ...
installing: gmpy2-2.0.8-py27hc856308_1 ...
installing: greenlet-0.4.12-py27hac09c53_0 ...
installing: grin-1.2.1-py27h54abee7_1 ...
installing: heapdict-1.0.0-py27h33770af_0 ...
installing: idna-2.6-py27h5722d68_1 ...
installing: imagesize-0.7.1-py27hd17bf80_0 ...
installing: ipaddress-1.0.18-py27h337fd85_0 ...
installing: ipython_genutils-0.2.0-py27h89fb69b_0 ...
installing: itsdangerous-0.24-py27hb8295c1_1 ...
installing: jdcal-1.3-py27h2cc5433_0 ...
installing: jedi-0.10.2-py27h8af4e35_0 ...
installing: lazy-object-proxy-1.3.1-py27h682c727_0 ...
installing: locket-0.2.0-py27h73929a2_1 ...
installing: lxml-4.1.0-py27hb025457_0 ...
installing: markupsafe-1.0-py27h97b2822_1 ...
installing: mccabe-0.6.1-py27h0e7c7be_1 ...
installing: mistune-0.7.4-py27h6da7e90_0 ...
installing: mkl-service-1.1.2-py27hb2d42c5_4 ...
installing: mpmath-0.19-py27h4bb41bd_2 ...
installing: msgpack-python-0.4.8-py27hc2fa789_0 ...
installing: multipledispatch-0.4.9-py27h9b5f95a_0 ...
installing: numpy-1.13.3-py27hbcc08e0_0 ...
installing: olefile-0.44-py27h4bd3e3c_0 ...
installing: pandocfilters-1.4.2-py27h428e1e5_1 ...
installing: path.py-10.3.1-py27hc258cac_0 ...
installing: pep8-1.7.0-py27h444351c_0 ...
installing: pkginfo-1.4.1-py27hee1a9ad_1 ...
installing: ply-3.10-py27hd6d9ae5_0 ...
installing: psutil-5.4.0-py27h7da3062_0 ...
installing: ptyprocess-0.5.2-py27h4ccb14c_0 ...
installing: py-1.4.34-py27he5894e4_1 ...
installing: pycodestyle-2.3.1-py27h904819d_0 ...
installing: pycosat-0.6.2-py27h1cf261c_1 ...
installing: pycparser-2.18-py27hefa08c5_1 ...
installing: pycrypto-2.6.1-py27h9abbf5c_1 ...
installing: pycurl-7.43.0-py27hcf8ebea_3 ...
installing: pyodbc-4.0.17-py27h7f7627d_0 ...
installing: pyparsing-2.2.0-py27hf1513f8_1 ...
installing: pysocks-1.6.7-py27he2db6d2_1 ...
installing: pytz-2017.2-py27hcac29fa_1 ...
installing: pyyaml-3.12-py27h2d70dd7_1 ...
installing: pyzmq-16.0.2-py27h297844f_2 ...
installing: qt-5.6.2-h974d657_12 ...
installing: qtpy-1.3.1-py27h63d3751_0 ...
installing: rope-0.10.5-py27hcb0a616_0 ...
installing: ruamel_yaml-0.11.14-py27h672d447_2 ...
installing: scandir-1.6-py27hf7388dc_0 ...
installing: simplegeneric-0.8.1-py27h19e43cd_0 ...
installing: sip-4.18.1-py27he9ba0ab_2 ...
installing: six-1.11.0-py27h5f960f1_1 ...
installing: snowballstemmer-1.2.1-py27h44e2768_0 ...
installing: sortedcontainers-1.5.7-py27he59936f_0 ...
installing: sphinxcontrib-1.0-py27h1512b58_1 ...
installing: sqlalchemy-1.1.13-py27hb0a01da_0 ...
installing: subprocess32-3.2.7-py27h373dbce_0 ...
installing: tblib-1.3.2-py27h51fe5ba_0 ...
installing: toolz-0.8.2-py27hd3b1e7e_0 ...
installing: typing-3.6.2-py27h66f49e2_0 ...
installing: unicodecsv-0.14.1-py27h5062da9_0 ...
installing: wcwidth-0.1.7-py27h9e3e1ab_0 ...
installing: webencodings-0.5.1-py27hff10b21_1 ...
installing: werkzeug-0.12.2-py27hbf75dff_0 ...
installing: wrapt-1.10.11-py27h04f6869_0 ...
installing: xlrd-1.1.0-py27ha77178f_1 ...
installing: xlsxwriter-1.0.2-py27h12cbc6b_0 ...
installing: xlwt-1.3.0-py27h3d85d97_0 ...
installing: babel-2.5.0-py27h20693cd_0 ...
installing: backports.shutil_get_terminal_size-1.0.0-py27h5bc021e_2 ...
installing: bottleneck-1.2.1-py27h21b16a3_0 ...
installing: cffi-1.10.0-py27hf1aaaf4_1 ...
installing: conda-verify-2.0.0-py27hf052a9d_0 ...
installing: cycler-0.10.0-py27hc7354d3_0 ...
installing: cytoolz-0.8.2-py27hf14aec9_0 ...
installing: entrypoints-0.2.3-py27h502b47d_2 ...
installing: h5py-2.7.0-py27h71d1790_1 ...
installing: harfbuzz-1.5.0-h2545bd6_0 ...
installing: html5lib-0.999999999-py27hdf15f34_0 ...
installing: llvmlite-0.20.0-py27_0 ...
installing: networkx-2.0-py27hfc23926_0 ...
installing: nltk-3.2.4-py27h41293c3_0 ...
installing: numexpr-2.6.2-py27he5efce1_1 ...
installing: openpyxl-2.4.8-py27h9f0c937_1 ...
installing: packaging-16.8-py27h5e07c7c_1 ...
installing: partd-0.3.8-py27h4e55004_0 ...
installing: pathlib2-2.3.0-py27h6e9d198_0 ...
installing: pexpect-4.2.1-py27hcf82287_0 ...
installing: pillow-4.2.1-py27h7cd2321_0 ...
installing: pycairo-1.13.3-py27hea6d626_0 ...
installing: pyqt-5.6.0-py27h4b1e83c_5 ...
installing: python-dateutil-2.6.1-py27h4ca5741_1 ...
installing: pywavelets-0.5.2-py27hecda097_0 ...
installing: qtawesome-0.4.4-py27hd7914c3_0 ...
installing: scipy-0.19.1-py27h1edc525_3 ...
installing: setuptools-36.5.0-py27h68b189e_0 ...
installing: singledispatch-3.4.0.3-py27h9bcb476_0 ...
installing: sortedcollections-0.5.3-py27h135218e_0 ...
installing: sphinxcontrib-websupport-1.0.1-py27hf906f22_1 ...
installing: ssl_match_hostname-3.5.0.1-py27h4ec10b9_2 ...
installing: sympy-1.1.1-py27hc28188a_0 ...
installing: traitlets-4.3.2-py27hd6ce930_0 ...
installing: zict-0.1.3-py27h12c336c_0 ...
installing: backports.functools_lru_cache-1.4-py27he8db605_1 ...
installing: bleach-2.0.0-py27h3a0dcc8_0 ...
installing: clyent-1.2.2-py27h7276e6c_1 ...
installing: cryptography-2.0.3-py27hea39389_1 ...
installing: cython-0.26.1-py27hdbcff32_0 ...
installing: datashape-0.5.4-py27hf507385_0 ...
installing: get_terminal_size-1.0.0-haa9412d_0 ...
installing: gevent-1.2.2-py27h475ea6a_0 ...
installing: imageio-2.2.0-py27hf108a7f_0 ...
installing: isort-4.2.15-py27hcfa4749_0 ...
installing: jinja2-2.9.6-py27h82327ae_1 ...
installing: jsonschema-2.6.0-py27h7ed5aa4_0 ...
installing: jupyter_core-4.3.0-py27hcd9ae3a_0 ...
installing: navigator-updater-0.1.0-py27h0f9cd39_0 ...
installing: nose-1.3.7-py27heec2199_2 ...
installing: numba-0.35.0-np113py27_10 ...
installing: pandas-0.20.3-py27h820b67f_2 ...
installing: pango-1.40.11-h8191d47_0 ...
installing: patsy-0.4.1-py27hd1cf8c0_0 ...
installing: pickleshare-0.7.4-py27h09770e1_0 ...
installing: pyflakes-1.6.0-py27h904a57d_0 ...
installing: pygments-2.2.0-py27h4a8b6f5_0 ...
installing: pytables-3.4.2-py27h1f7bffc_2 ...
installing: pytest-3.2.1-py27h98000ae_1 ...
installing: scikit-learn-0.19.1-py27h445a80a_0 ...
installing: testpath-0.3.1-py27hc38d2c4_0 ...
installing: tornado-4.5.2-py27h97b179f_0 ...
installing: wheel-0.29.0-py27h411dd7b_1 ...
installing: astroid-1.5.3-py27h8f8f47c_0 ...
installing: astropy-2.0.2-py27h57072c0_4 ...
installing: bkcharts-0.2-py27h241ae91_0 ...
installing: bokeh-0.12.10-py27he46cc6b_0 ...
installing: distributed-1.19.1-py27h38c4a05_0 ...
installing: flask-0.12.2-py27h6d5c1cd_0 ...
installing: jupyter_client-5.1.0-py27hbee1118_0 ...
installing: matplotlib-2.1.0-py27h09aba24_0 ...
installing: nbformat-4.4.0-py27hed7f2b2_0 ...
installing: pip-9.0.1-py27hbf658b2_3 ...
installing: prompt_toolkit-1.0.15-py27h1b593e1_0 ...
installing: pyopenssl-17.2.0-py27h189ff3b_0 ...
installing: statsmodels-0.8.0-py27hc87d62d_0 ...
installing: terminado-0.6-py27h4be8df9_0 ...
installing: dask-0.15.3-py27hb94b45f_0 ...
installing: flask-cors-3.0.3-py27h1a8a27f_0 ...
installing: ipython-5.4.1-py27h36c99b6_1 ...
installing: nbconvert-5.3.1-py27he041f76_0 ...
installing: pylint-1.7.4-py27h6bc7935_0 ...
installing: seaborn-0.8.0-py27h9d2aaa1_0 ...
installing: urllib3-1.22-py27ha55213b_0 ...
installing: ipykernel-4.6.1-py27hc93e584_0 ...
installing: odo-0.5.1-py27h9170de3_0 ...
installing: requests-2.18.4-py27hc5b0589_1 ...
installing: scikit-image-0.13.0-py27h06cb35d_1 ...
installing: anaconda-client-1.6.5-py27hc8169bf_0 ...
installing: blaze-0.11.3-py27h5f341da_0 ...
installing: conda-4.3.30-py27h6ae6dc7_0 ...
installing: jupyter_console-5.2.0-py27hc6bee7e_1 ...
installing: notebook-5.0.0-py27h3661c2b_2 ...
installing: qtconsole-4.3.1-py27hc444b0d_0 ...
installing: sphinx-1.6.3-py27hf9b1778_0 ...
installing: anaconda-project-0.8.0-py27hd7a9a97_0 ...
installing: conda-build-3.0.27-py27hff9f855_0 ...
installing: jupyterlab_launcher-0.4.0-py27h0e16d15_0 ...
installing: numpydoc-0.7.0-py27h9647a75_0 ...
installing: widgetsnbextension-3.0.2-py27hcb77dec_1 ...
installing: anaconda-navigator-1.6.9-py27hfbc306d_0 ...
installing: ipywidgets-7.0.0-py27h4fda95d_0 ...
installing: jupyterlab-0.27.0-py27h42ebfef_2 ...
installing: spyder-3.2.4-py27h04a3490_0 ...
installing: _ipyw_jlab_nb_ext_conf-0.1.0-py27h08a7f0c_0 ...
installing: jupyter-1.0.0-py27h505fd4b_0 ...
installing: anaconda-5.0.1-py27hd9359a7_1 ...
installation finished.
Do you wish the installer to prepend the Anaconda2 install location
to PATH in your /home/deeplearning/.bashrc ? [yes|no]
[no] >>> 
You may wish to edit your .bashrc to prepend the Anaconda2 install location to PATH:

export PATH=/home/deeplearning/anaconda2/bin:$PATH

Thank you for installing Anaconda2!

 

   因为这是一个坑,是安装时最后一步添加环境变量的时候没有选择yes导致运行 conda info 时出错,很好解决,根据错误提示:

  然后,紧接着去配置Anaconda2的环境变量。怎么做呢?很简单。

 

 

  在命令行输入就可以了。

$ export PATH=/home/deeplearning/anaconda2/bin:$PATH

 

 

 

 

 

 

 

 

 

 

第二步、建立一个tensorflow的运行环境

# Python 2.7 (选好自己的) 
$ conda create -n tensorflow python=2.7  
  
# Python 3.4  (选好自己的)
$ conda create -n tensorflow python=3.4  
  
# Python 3.5  (选好自己的)
$ conda create -n tensorflow python=3.5  

 

 

   注意:在这一步,你也许会遇到conda: command not found

 

  遇到这个问题的时候, 


  解决方法是:

export PATH="/home/[your_name]/anaconda/bin:$PATH"

  比如我这里是

export PATH=/home/deeplearning/anaconda2/bin:$PATH

 

  但是下一次重启之后,还是会出现这个问题,所以我们要激活下 ~/.bash_profile

. ~/.bash_profile
#或者
source ~/.bash_profile

 

 

或者source /etc/profile

 那是因为我的环境变量是如下:

 

#Anaconda2
ANACONDA2_HOME=/home/deeplearning/anaconda2
ANACONDA2_BIN=/home/deeplearning/anaconda2/bin
PATH=$PATH:$ANACONDA2_BIN
export ANACONDA2_HOME ANACONDA2_BIN PATH

 

 

   所以,

deeplearning@deeplearningsinglenode:~$ conda create -n tensorflow python=2.7  
Fetching package metadata ...........
Solving package specifications: .

Package plan for installation in environment /home/deeplearning/anaconda2/envs/tensorflow:

The following NEW packages will be INSTALLED:

    ca-certificates: 2017.08.26-h1d4fec5_0   
    certifi:         2017.11.5-py27h71e7faf_0
    libedit:         3.1-heed3624_0          
    libffi:          3.2.1-hd88cf55_4        
    libgcc-ng:       7.2.0-h7cc24e2_2        
    libstdcxx-ng:    7.2.0-h7a57d05_2        
    ncurses:         6.0-h9df7e31_2          
    openssl:         1.0.2m-h26d622b_1       
    pip:             9.0.1-py27ha730c48_4    
    python:          2.7.14-hdd48546_24      
    readline:        7.0-ha6073c6_4          
    setuptools:      36.5.0-py27h68b189e_0   
    sqlite:          3.20.1-hb898158_2       
    tk:              8.6.7-hc745277_3        
    wheel:           0.30.0-py27h2bc6bb2_1   
    zlib:            1.2.11-ha838bed_2       

Proceed ([y]/n)? y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第三步、在conda环境中安装tensorflow

  在conda环境中安装tensorflow的好处是可以便捷的管理tensorflow的依赖包。

  分为两个步骤:激活上一步建立的名为tensorflow的conda环境;用conda或者pip工具安装Tensorflow,我选择的是pip方式。

 

3.1 pip方式(可以这种方式来安装)

  pip方式需要首先激活conda环境

deeplearning@deeplearningsinglenode:~$ source activate tensorflow
(tensorflow) deeplearning@deeplearningsinglenode:~$ 

 

 

   然后根据要安装的不同tensorflow版本选择对应的一条环境变量设置export语句(操作系统,Python版本,CPU版本还是CPU+GPU版本)

# Ubuntu/Linux 64-bit, CPU only, Python 2.7  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl  
  
# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7  
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl  
  
# Mac OS X, CPU only, Python 2.7:  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.10.0-py2-none-any.whl  
  
# Mac OS X, GPU enabled, Python 2.7:  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.10.0-py2-none-any.whl  
  
# Ubuntu/Linux 64-bit, CPU only, Python 3.4  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp34-cp34m-linux_x86_64.whl  
  
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4  
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp34-cp34m-linux_x86_64.whl  
  
# Ubuntu/Linux 64-bit, CPU only, Python 3.5  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp35-cp35m-linux_x86_64.whl  
  
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5  
# Requires CUDA toolkit 7.5 and CuDNN v5. For other versions, see "Install from sources" below.  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0-cp35-cp35m-linux_x86_64.whl  
  
# Mac OS X, CPU only, Python 3.4 or 3.5:  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.10.0-py3-none-any.whl  
  
# Mac OS X, GPU enabled, Python 3.4 or 3.5:  
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.10.0-py3-none-any.whl  

 

 

 

 

 

 

 

  最后根据是python 2还是3版本选择一句进行安装。

# Python 2  
(tensorflow)$ pip install --ignore-installed --upgrade $TF_BINARY_URL  
  
# Python 3  
(tensorflow)$ pip3 install --ignore-installed --upgrade $TF_BINARY_URL 

 

 

 

 
(tensorflow) deeplearning@deeplearningsinglenode:~$ pip install --ignore-installed --upgrade $TF_BINARY_URL
Collecting tensorflow==0.10.0 from https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl
  Downloading https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-cp27-none-linux_x86_64.whl (36.6MB)
    12% |████                            | 4.5MB 14.0MB/s eta 0:00:03^[^A^[^AException:
Traceback (most recent call last):
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/basecommand.py", line 215, in main
    status = self.run(options, args)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/commands/install.py", line 335, in run
    wb.build(autobuilding=True)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/wheel.py", line 749, in build
    self.requirement_set.prepare_files(self.finder)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/req/req_set.py", line 380, in prepare_files
    ignore_dependencies=self.ignore_dependencies))
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/req/req_set.py", line 620, in _prepare_file
    session=self.session, hashes=hashes)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 821, in unpack_url
    hashes=hashes
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 659, in unpack_http_url
    hashes)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 882, in _download_http_url
    _download_url(resp, link, content_file, hashes)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 605, in _download_url
    consume(downloaded_chunks)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/utils/__init__.py", line 852, in consume
    deque(iterator, maxlen=0)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 571, in written_chunks
    for chunk in chunks:
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/utils/ui.py", line 139, in iter
    for x in it:
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/download.py", line 560, in resp_read
    decode_content=False):
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/response.py", line 357, in stream
    data = self.read(amt=amt, decode_content=decode_content)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/response.py", line 324, in read
    flush_decoder = True
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/contextlib.py", line 35, in __exit__
    self.gen.throw(type, value, traceback)
  File "/home/deeplearning/anaconda2/envs/tensorflow/lib/python2.7/site-packages/pip/_vendor/requests/packages/urllib3/response.py", line 246, in _error_catcher
    raise ReadTimeoutError(self._pool, None, 'Read timed out.')
ReadTimeoutError: HTTPSConnectionPool(host='storage.googleapis.com', port=443): Read timed out.
(tensorflow) deeplearning@deeplearningsinglenode:~$ 

  

  注意:这是在安装tensorflow的时候创建tensorflow环境失败,这是个坑,因为有些版本地址失效了。

                  换其他版本试试。比如如下我现在是2017年12月份,采用conda方式安装tensorflow,版本已经是1.4.0-py27_0

 

 

 

 
 
 
 
 
 
 
 
 

3.2 conda方式(或者也可以这种方式来安装)

  conda上面目前有人已经做好了tensorflow的pkg,但是版本不一定最新,且只有CPU版本,不支持GPU。

  步骤也是首先激活conda环境,然后调用conda install 语句安装.

$ source activate tensorflow  
(tensorflow)$  # Your prompt should change  
  
# Linux/Mac OS X, Python 2.7/3.4/3.5, CPU only:  
(tensorflow)$ conda install -c conda-forge tensorflow  

 

 

 

(tensorflow) deeplearning@deeplearningsinglenode:~$ conda install -c conda-forge tensorflow  
Fetching package metadata .............
Solving package specifications: .

Package plan for installation in environment /home/deeplearning/anaconda2/envs/tensorflow:

The following NEW packages will be INSTALLED:

    bleach:       1.5.0-py27_0          conda-forge
    enum34:       1.1.6-py27_1          conda-forge
    funcsigs:     1.0.2-py_2            conda-forge
    futures:      3.2.0-py27_0          conda-forge
    html5lib:     0.9999999-py27_0      conda-forge
    intel-openmp: 2018.0.0-hc7b2577_8              
    markdown:     2.6.9-py27_0          conda-forge
    mkl:          2018.0.1-h19d6760_4              
    mock:         2.0.0-py27_0          conda-forge
    numpy:        1.13.3-py27hbcc08e0_0            
    pbr:          3.1.1-py27_0          conda-forge
    protobuf:     3.5.0-py27_0          conda-forge
    six:          1.11.0-py27_1         conda-forge
    tensorboard:  0.4.0rc3-py27_0       conda-forge
    tensorflow:   1.4.0-py27_0          conda-forge
    webencodings: 0.5-py27_0            conda-forge
    werkzeug:     0.12.2-py_1           conda-forge

Proceed ([y]/n)? y

intel-openmp-2 100% |#################################| Time: 0:00:01 478.61 kB/s
mkl-2018.0.1-h 100% |#################################| Time: 0:01:08   2.84 MB/s
enum34-1.1.6-p 100% |#################################| Time: 0:00:01  32.00 kB/s
funcsigs-1.0.2 100% |#################################| Time: 0:00:00  38.56 kB/s
futures-3.2.0- 100% |#################################| Time: 0:00:00  74.10 kB/s
markdown-2.6.9 100% |#################################| Time: 0:00:01  73.17 kB/s
six-1.11.0-py2 100% |#################################| Time: 0:00:00  62.19 kB/s
webencodings-0 100% |#################################| Time: 0:00:00  25.65 kB/s
werkzeug-0.12. 100% |#################################| Time: 0:00:14  17.24 kB/s
html5lib-0.999 100% |#################################| Time: 0:00:04  39.10 kB/s
bleach-1.5.0-p 100% |#################################| Time: 0:00:00  66.33 kB/s
protobuf-3.5.0 100% |#################################| Time: 0:00:47 128.41 kB/s
tensorboard-0. 100% |#################################| Time: 0:00:22  77.40 kB/s
pbr-3.1.1-py27 100% |#################################| Time: 0:00:02  41.01 kB/s
mock-2.0.0-py2 100% |#################################| Time: 0:00:03  30.23 kB/s
tensorflow-1.4 100% |#################################| Time: 0:03:53 153.09 kB/s
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ 

 

 

 

 

  上面的步骤完成后,从conda环境中退出:

(tensorflow)$ source deactivate  

 

 

 
 
 
 
 

 

第四步、测试安装是否成功

   首先激活 tensorflow 环境,然后进入 python,最后导入 tensorflow 库。如果导入成功则表明安装成功。

(tensorflow) deeplearning@deeplearningsinglenode:~$ source deactivate  
deeplearning@deeplearningsinglenode:~$ 
deeplearning@deeplearningsinglenode:~$ 
deeplearning@deeplearningsinglenode:~$ source activate tensorflow  
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ python
Python 2.7.14 |Anaconda, Inc.| (default, Nov 20 2017, 18:04:19) 
[GCC 7.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('Hi,TensorFlow!')
>>> sess = tf.Session()
2017-12-04 19:18:08.790862: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
>>> print sess.run(hello)
Hi,TensorFlow!
>>> 

 

 

 

 

 

 

 

 

 

 

 

第五步、需要使用 TensorFlow 的时候必须重新激活

  当使用完毕后,关闭 tensorflow 环境。

Use exit() or Ctrl-D (i.e. EOF) to exit
>>> exit()
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ 
(tensorflow) deeplearning@deeplearningsinglenode:~$ source deactivate
deeplearning@deeplearningsinglenode:~$ 

  然后你的终端提示符就会变会原的样子。

 

 

  当你需要再次使用的时候就必须再次激活 tensorflow 环境。

source activate tensorflow

  ..........

  ......

  关闭 tensorflow 环境,并重新激活

 

 

 

 

 

第五步、 Finally

  至此,你已经拥有了一个可以玩耍机器学习的 tensorflow 环境,好好玩耍吧:)

  你可以参照官方文档快速的运行一个手写数字识别的示例。友情提示:仅 CPU 版本你需要有足够的耐心。。。。。。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

欢迎大家,加入我的微信公众号:大数据躺过的坑        人工智能躺过的坑
 
 
 

同时,大家可以关注我的个人博客

   http://www.cnblogs.com/zlslch/   和     http://www.cnblogs.com/lchzls/      http://www.cnblogs.com/sunnyDream/   

   详情请见:http://www.cnblogs.com/zlslch/p/7473861.html

 

  人生苦短,我愿分享。本公众号将秉持活到老学到老学习无休止的交流分享开源精神,汇聚于互联网和个人学习工作的精华干货知识,一切来于互联网,反馈回互联网。
  目前研究领域:大数据、机器学习、深度学习、人工智能、数据挖掘、数据分析。 语言涉及:Java、Scala、Python、Shell、Linux等 。同时还涉及平常所使用的手机、电脑和互联网上的使用技巧、问题和实用软件。 只要你一直关注和呆在群里,每天必须有收获

 

      对应本平台的讨论和答疑QQ群:大数据和人工智能躺过的坑(总群)(161156071) 

 

 

 

 

 

 

 

 

 

 

 

 

转载于:https://www.cnblogs.com/zlslch/p/7975791.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值