「BZOJ 5161」最长上升子序列「状压DP」

题意

求一个\(1\sim n\)的排列LIS的期望长度,\(n\leq 28\)

题解

考虑朴素的LIS:\(f[i] = min(f[j]) + 1\)

\(mx[i]\)\(f\)的前缀最大值,那么可以得到一个性质\(mx[i + 1] \in [mx[i], mx[i] + 1]\)

\(mx\)数组进行差分,则差分数组只有\(01\),可以状压

由于\(mx[1] - mx[0]=1\),从第二位开始状压

然后考虑从\(1\sim i\)的排列推到\(1\sim i+1\)的排列,\(1\sim i\)的差分数组为\(S\)。把i插入第\(j\)\(1\sim i+1\))个数前面:

\(j=1\):新状态为\(S << 1\),即\(mx[2]\)\(0\),而其余不改

\(j>1\)\(mx[1]\)\(mx[j - 1]\)不变,\(mx[j]\)\(mx[i]\)整体右移一位,新的\(mx[j]\)为1,但要把新的\(mx[j]\)后面第一个\(1\)删去(因为\(j\)处答案变大了,所以该点和新答案一样大,差分数组对应\(0\)

注意实现的时候第\(k\)个位置对应\(1<<(k-2)\)

打表程序:

    static int dp[2][134217728], ans;
    for(int n = 1; n <= 28; n ++) {
          memset(dp, 0, sizeof dp); 
          int r = 0; dp[0][0] = 1; ans = 0;
          for(int i = 1; i < n; i ++, r ^= 1) {
              fill(dp[r ^ 1], dp[r ^ 1] + (1 << i), 0);
              for(int j = 0; j < (1 << (i - 1)); j ++) if(dp[r][j]) {
                  upd(dp[r ^ 1][j << 1], dp[r][j]);
                  int la = -1;
                  for(int k = i + 1; k >= 2; k --) {
                      int t = j;
                      if(j >> (k - 2) & 1) la = k - 2;
                      if(~ la) t ^= 1 << la;
                      t = t >> (k - 2) << (k - 1) | ( 1 << (k - 2) ) | ( j & (( 1 << (k - 2) ) - 1) );
                      upd(dp[r ^ 1][t], dp[r][j]);
                  }
              }
          }
          for(int i = 0; i < (1 << (n - 1)); i ++)
              upd(ans, 1ll * dp[r][i] * (__builtin_popcount(i) + 1) % mo);
          int fac = 1;
          for(int i = 2; i <= n; i ++) fac = 1ll * fac * i % mo;
          printf("%d, ", 1ll * ans * qpow(fac, mo - 2) % mo);
    }

提交程序:

#include <cstdio>
const int qwq[] = {1, 499122178, 2, 915057326, 540715694, 946945688, 
422867403, 451091574, 317868537, 200489273, 976705134, 705376344, 662845575, 
331522185, 228644314, 262819964, 686801362, 495111839, 947040129, 414835038, 
696340671, 749077581, 301075008, 314644758, 102117126, 819818153, 273498600, 267588741};
int main() {
    int n; scanf("%d", &n); printf("%d\n", qwq[n - 1]);
    return 0;
}

转载于:https://www.cnblogs.com/hongzy/p/11331756.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值