更新: 29 JUL 2016
由QR方法知,求矩阵$A$的特征值,大多需要先将其三对角化(详细方法见徐树方先生的教材。此处外链一个例子),即
$$ T=Q^TAQ $$
即找到正交矩阵$Q$使得$T$成为三对角矩阵。然而若$A$为大型稀疏矩阵,常用的方法如Householder和Givens变换都无法充分利用$A$的稀疏性,因此考虑直接计算$T$和$Q$的矩阵元以利用$A$的稀疏性加速运算。
一、Lanczos方法基本原理
将以上分解式中的$Q$写成
$$ Q=[q_1,q_2,\cdots,q_n] $$
其中$ q_i $为$Q$的列向量。$T$写成
$$ T=\begin{bmatrix} \alpha_1 & \beta_1 & & & 0 \\ \beta_1 & \alpha_2 &\ddots & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \alpha_{n-1} & \beta_{n-1} \\ 0 & & & \beta_{n-1} & \alpha_n \end{bmatrix} $$
比较
$$ AQ=QT $$
两边矩阵的