[矩阵计算]Lanczos方法:求稀疏矩阵特征值

Lanczos方法通过迭代过程将大型稀疏矩阵三对角化,有效利用其稀疏性来求解特征值。在没有误差情况下,Lanczos向量正交,最多迭代n步。在误差存在时,虽然正交性会丧失,但随着迭代次数增加,能得到矩阵更多特征值的精确近似。适用于求大型稀疏对称矩阵的两端特征值。
摘要由CSDN通过智能技术生成

更新: 29 JUL 2016

QR方法知,求矩阵$A$的特征值,大多需要先将其三对角化(详细方法见徐树方先生的教材。此处外链一个例子),即

$$ T=Q^TAQ $$

即找到正交矩阵$Q$使得$T$成为三对角矩阵。然而若$A$为大型稀疏矩阵,常用的方法如Householder和Givens变换都无法充分利用$A$的稀疏性,因此考虑直接计算$T$和$Q$的矩阵元以利用$A$的稀疏性加速运算。

 

一、Lanczos方法基本原理

将以上分解式中的$Q$写成

$$ Q=[q_1,q_2,\cdots,q_n] $$

其中$ q_i $为$Q$的列向量。$T$写成

$$ T=\begin{bmatrix} \alpha_1 & \beta_1 & & & 0 \\ \beta_1 & \alpha_2 &\ddots & & \\ & \ddots & \ddots & \ddots &  \\ & & \ddots & \alpha_{n-1} & \beta_{n-1} \\ 0 & & & \beta_{n-1} & \alpha_n  \end{bmatrix} $$

比较

$$ AQ=QT $$

两边矩阵的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值