主振型 matlab 振动,基于MATLAB语言的多自由度振动系统的固有频率及主振型计算分析...

基于 MATLAB 语言的多自由度振动系统的固有频率及主振型计算分析 文  涛 ,胡青春 (华南理工大学 机械工程学院 ,广东 广州  510640) 摘要 :多自由度振动系统固有频率及主振型计算分析是研究其振动特性的基础 ,矩阵迭代法是计算固有频率及主振型的基本方法之一。根据矩阵迭代的方法 ,利用 MATLAB 编程并验证程序的正确性。通过程序的运行 ,能快速获得多自由度振动系统的固有频率以及主振型 ,为设计人员提供了防止系统共振的理论依据 ,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础。 关键词 :MATLAB ;多自由度 ;振动系统 ;固有频率 ;主振型 中图分类号 :TH113    文献标识码 :A    文章编号 :1672 - 1616( 2007) 01 - 0078 - 04   在工程振动中 ,确定系统固有频率与主振型是非常重要的。固有频率是决定系统振动特性的重要物理量 ,它既是防止系统共振的依据 ,又是多自由度系统解耦分析(模态分析)的前提 ,因此研究某系统振动时 ,首先要求出系统的固有频率。主振型则为初步分析各构件的振动情况以及解耦分析奠定了基础。 对于多自由度振动系统 ,计算系统固有频率与主振型主要有 2 种方法[1] : (1) 利用特征矩阵方程式与特征方程式求解 ; (2) 矩阵迭代法求解。2 种方法各有各的特色。对于低自由度的振动系统 ,方法一容易、快捷。但是在实际工程中 ,大多数振动系统都是自由度较多 ,用特征矩阵方程式与特征方程式求解系统固有频率与主振型这种传统的计算方法虽然从原则上可行 ,但当自由度增加时 ,惯性、刚度阵的阶数增高 ,计算量也急剧加大 ,这显然很不方便。但采用矩阵迭代法 ,即使是自由度很大的振动系统 ,计算量也只不过是多进行矩阵迭代而已 ,而且假设的初始矩阵愈接近实际状况 ,迭代的次数愈少 ,相应的计算量也愈少。 1  MATLAB 语言的优点 MATLAB 作为一个以矩阵和数组为核心计算的软件 ,对矩阵迭代法中的矩阵迭代计算尤其适合[2] 。就所查的资料看 ,以前的学者和研究人员 采用矩阵迭代求解系统固有频率与主振型时 ,大部分都是用 Visiual Basic 或 Fortran 语言来编写程序[3] 。限于 Visiual Basic 或 Fortran 本身语句以及语法的局限性 ,用这种高级语言编写的程序涉及到选择合适的算法和编写冗长的语言代码以及键入和调试等一系列问题。即使有现成的标准子程序可供调用 ,要在一些较复杂的、科研问题中编写一个完整的程序仍然是一个复杂的、技巧性很强的工作。因此 ,用高级语言编写的程序一般代码段较长 ,需要调用的子程序较多 ,整个程序的通读性较差。相反 ,MATLAB 则有简洁、可读性强等优点。 2  用 MATALAB 实现计算多自由度系统固有频率以及主振型分析 2. 1  矩阵迭代求解系统固有频率以及主振型分析[4 ,5] 在多自由度正定系统的自由振动中 ,其固有频率及主振型可由迭代式 1 ω2 n , j { A ( j) } = [δ][ M ][ A ( j) ] (1) 或 ω2 n , j A ( j) = [ M ] - 1[ K][ A ( j) ] (2) 求得。实践得知 ,用式(1) 进行迭代将首先获得最低阶的固有频率及主振型 ,并依此可以求得部分或全部固有频率与主振型的值。在工程中通常对系 收稿日期:2006 - 09 - 25 作者简介:文  涛(1982 - ) ,男 ,湖南益阳人 ,华南理工大学在读硕士研究生 ,主

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值