一、教学目标
1、鼓励学生自己梳理所学的内容,并力图在不同内容之间寻找联系。因此本节课应以学生小组活动为主,尽可能让他们在反思和交流的过程中,逐步建立知识体系。
2、在学生充分交流后,教师引导学生建立本章知识体系框架图。
3、本章主要内容围绕常见几何体展开。包括简单几何体的特征以及依据这些特征进行的分类,从不同的角度(不同方向看),利用不同的方式(展开与折叠、切割),研究简单几何体的某些特征,研究组成几何体的基本元素(点、线、面)间的相互关系。
二、复习回顾
1、依次回忆各节学习内容,两人一组,回答下列问题:
(1)生活中有哪些常见的几何体?请举列说明.
(2)棱柱、圆柱、圆锥的特征分别是什么?从哪些方面来描述?
(3)你能列举哪些点动成线、线动成面、面动成体的实例?
(4)找出两种几何体,使得分别用一个平面去截他们,可以得到三角形形状的截面。
(5)举出一种几何体,使得从正面、左面、上面看到的这个几何体的形状图都一样,你能举出几种?
2、引导学生交流以上问题,教师在黑板上适当的位置写下相应的知识点。
注意,这里不仅仅是理论的说明,教师应根据情况应该让学生进行一定的解释和举例说明。
3、进一步提问:这些知识之间有什么样的联系?能否用适当的符号,将这些关系表示出来。同时,在黑板上进行适当的标注。
4、通过上述步骤,在黑板上形成一个全章的知识框架图。教师分析这个框架图,并解释其中较为重要的知识点、考察点。同时,在设计例题时,也考虑与这些考察点相对应。
下面是本章知识体系的一个参考框图:

《丰富的图形世界》知识框架图
三、例题
例1、将下图中的几何体进行分类,并说明它们是由哪些面围城的。

例1 图
分析:将几何体分类,方法并不唯一,只要能说明分类的理由即可。但要注意:按某一标准分类时要做到不重不漏。分类标准不同时,分类的结果也不尽相同。
答:按照柱体、椎体、球体分类:(1)、(2)、(6)是柱体;(3)、(4)是椎体;(5)是球体。
若按多面体(各个面由平面图形组成)、旋转体(由平面图绕某条直线形旋转而成)分:(1)、(4)、(6)是多面体;(2)、(3)、(5)是旋转体。
例2、用一个平面去截一个正方体,如果截去的几何体是一个三棱锥,那么
(1)截面一定是什么图形?
(2)剩下的几何体可能有几个顶点?
解:(1)如果截去的几何体是一个三棱锥,那么截面一定是一个三角形。
(2)如图所示,剩下的几何体可能有7个,8个,9个,10个顶点。

例2 解答图
本题具有一定的开放性,对于七年级学生来说具有很强的挑战性,解题的关键在于抓住“截面为三角形“这一特点,由此可联想到上述图中各种不同情况。
例3、将一个直角三角形ABC绕它的一边旋转,试画出旋转后所得到的几何体。
分析:由于题目中没有说明绕哪条边旋转,所以必须分三种情况考虑,得到三个不同的几何体。
解:如图,分别绕三条边旋转一周,得到三个几何体。

例3题解
四、复习题

第1题
答:1、由4个面围成;面与面相交成6条线,其中4条是直的,2条是曲的。

第2题平面图

第2题围成的几何体
答:2、平面图中的(1)、(2)、(3),分别对应着折成后的C、B、A。

第3题
答:(1)不可以;(2)可以;(3)不可以

第4题
答:形状顺次为六边形,长方形,梯形、平行四边形。

5、6、7、8题和图
解:5,可以,可以
解:6,7题,如图所示

6题 7题答案
解:8、对于由大小相同的小立方块搭成的几何体来说,从正面、上面、左面看到两个不同的几何体时,看到的形状图有可能是相同的。

第8题举例
例如从正面、上面、左面上面两个几何体时,看到的形状图都相同,但显然这两个几何体的形状并不相同。几何体(A)由6个小立方块组成,而几何体(B)由7个小立方块组成.
出现这种情况与形状图的画法有关,如画形状图时用实线画出了每个小正方形的轮廓线,这一点与正规三视图是有区别的。(对此教师要心中有数,但不要向学生讲解)。
本题的答案有多种,从左面看到的形状图,可能有以下几种:

第8题答案

第9、10、11题
第9题答案:45乘以圆周率,单位:立方米。
解10:共8种。学生列出几种即可。

第10题答案
联系拓广第11题,解答:参考例3,是例3中的“绕斜边AB旋转“而成的几何体。
五、课堂小结:第一章内容讲完,同学们可以在课本学好的基础上,再做一下对应的《新课堂同步学习与探究》。这一章内容就基本没问题了,祝同学们顺利进入下一章的学习。
(我抽空打算录一个视频课,还没录过。但也要学,活到老学到老。)